{-# OPTIONS --postfix-projections --prop #-}
module Id-Tele where

open import Agda.Primitive
open import Lib
open import Fam as _
open import Id

---------------------------------------------------------------------------------
--- Derivation of identity type elimination structure on the join of families ---
---------------------------------------------------------------------------------

module _ {ic jc id jd} {C : Fam {ic} {jc}}  CId : Id-Intro C 
                       {D : Fam {id} {jd}}  DId : Id-Intro D   CId-Elim-D : Id-Elim C D  where
  private
    module C          = Fam C
    module CId        = Id-Intro CId
    module CId-Elim-D = Id-Elim CId-Elim-D
    module D          = Fam D
    module DId        = Id-Intro DId

  instance
    Id-Intro-∗ : Id-Intro (C  D)
    Id-Intro-∗ .Id-Intro.Id (xc , xd) (yc , yd) = CId.Id xc yc , λ p  DId.Id (CId-Elim-D.transp _ xd p) yd
    Id-Intro-∗ .Id-Intro.idp = CId.idp , CId-Elim-D.transp-β

module Id-Tele-r {ie je} (E : Fam {ie} {je})  EId : Id-Intro E   EId-Elim-E : Id-Elim E E   where
  private
    module EId = IdM E _
  instance
    Id-Elim-⊤-r :  {i j}  Id-Elim (Fam-⊤ {i} {j}) E
    Id-Elim-⊤-r .Id-Elim.J P d yp = d
    Id-Elim-⊤-r .Id-Elim.J-β = EId.idp

  module _ {ic jc} {C : Fam {ic} {jc}}  CId : Id-Intro C 
           {id jd} {D : Fam {id} {jd}}  DId : Id-Intro D   CId-Elim-D : Id-Elim C D   DId-Elim-D : Id-Elim D D 
            CId-Elim-E : Id-Elim C E   DId-Elim-E : Id-Elim D E  where
    private
      module C          = Fam C
      module CId        = Id-Intro CId
      module CId-Elim-D = Id-Elim CId-Elim-D
      module D          = Fam D
      module DId        = IdM D _
      module E          = Fam E
      module CId-Elim-E = Id-Elim CId-Elim-E
      module DId-Elim-E = Id-ElimM D E _
      module CDId       = Id-Intro (Id-Intro-∗ {C = C} {D = D})

    instance
      abstract
        Id-Elim-∗-r : Id-Elim (C  D) E
        Id-Elim-∗-r = record { J = λ P d yp  d₅ _ _ _ _ P d yp
                             ; J-β = λ { {P = P} {d}   _ _ _ _ P d } }
          where module _ (Ac : C.Ty) (Ad : C.Tm Ac  D.Ty) (xc : C.Tm Ac) (xd : D.Tm (Ad xc))
                         (P : CDId.Singl {A = Ac , Ad} (xc , xd)  E.Ty)
                         (d : E.Tm (P CDId.center)) where
                   = CId-Elim-D.transp-β {d = _}
                  abstract
                    d₁ : E.Tm (P ((xc , _) , (CId.idp , DId.trans  DId.idp)))
                    d₁ = DId-Elim-E.transp  z  P ((xc , _) , _ , z)) d (DId.sym DId.trans-β-r)
                    d₂ :  z q  E.Tm (P ((xc , z) , (CId.idp , DId.trans  (DId.trans (DId.sym ) q))))
                    d₂ z q = DId-Elim-E.J  (w , r)  P ((xc , w) , (CId.idp , DId.trans  r)))
                                          d₁
                                          (_ , DId.trans (DId.sym ) q)
                    d₂tβ : E.Tm (P ((xc , xd) , (CId.idp , DId.trans  (DId.trans (DId.sym ) ))))
                    d₂tβ = d₂ _ 
                    d₂β₀ : E.Tm (EId.Id (DId-Elim-E.transp  z  (P ((xc , _) , (_ , z))))
                                            d₂tβ
                                            (DId.ap (DId.trans ) (DId.sym (DId.sym (DId.trans-sym-l )))))
                                          d₁)
                    d₂β₀ = DId-Elim-E.J  (z , q)  EId.Id
                                             (DId-Elim-E.transp  z  (P ((xc , _) , (_ , z))))
                                               (DId-Elim-E.J  (w , r)  P ((xc , w) , (CId.idp , DId.trans  r))) d₁ (_ , z))
                                               (DId.ap (DId.trans ) (DId.sym q)))
                                             d₁)
                           (EId.trans (DId-Elim-E.ap (DId-Elim-E.transp  z  P ((xc , _) , _ , z)) _) (DId.trans (DId.ap (DId.ap (DId.trans )) DId.sym-β) DId.J-β))
                           (EId.trans DId-Elim-E.transp-β DId-Elim-E.J-β))
                           (_ , DId.sym (DId.trans-sym-l ))
                    d₂β : E.Tm (EId.Id (d₂ _ ) (DId-Elim-E.transp  z  (P ((xc , _) , (_ , z)))) d₁ (DId.ap (DId.trans ) (DId.sym (DId.trans-sym-l )))))
                    d₂β = EId.trans
                          (EId.sym (EId.trans DId-Elim-E.transp-trans (EId.trans (DId-Elim-E.ap  z₁  DId-Elim-E.transp  z  P ((xc , _) , _ , z)) d₂tβ z₁)
                            (DId.trans DId.trans-ap (DId.trans (DId.ap (DId.ap (DId.trans )) (DId.trans-sym-l _)) DId.J-β))) DId-Elim-E.transp-β)))
                          (EId.ap  z  DId-Elim-E.transp  z  (P ((xc , _) , (_ , z)))) z (DId.ap (DId.trans ) (DId.sym (DId.trans-sym-l )))) d₂β₀)
                    d₃ :  z q  E.Tm (P ((xc , z) , (CId.idp , q)))
                    d₃ z q = DId-Elim-E.transp  z  P ((xc , _) , _ , z)) (d₂ z q)
                             (DId.trans DId.trans-assoc (DId.trans (DId.ap  a  DId.trans a q) (DId.trans-sym-r _)) DId.trans-β-l))

                    d₄ :  (yp : CId.Singl xc)  E.Tm (P (_ , (yp .snd , DId.idp)))
                    d₄ (_ , pc) = CId-Elim-E.J  (z , q)  P (_ , (q , DId.idp))) (d₃ _ _) (_ , pc)
                    d₅ :  (yp : CDId.Singl (xc , xd))  E.Tm (P (_ , (yp .snd .fst , yp .snd .snd)))
                    d₅ yp@(_ , (pc , pd)) = DId-Elim-E.J  (z , q)  P (_ , (pc , q))) (d₄ _) (_ , pd)

                    eq₁ : E.Tm (EId.Id (d₂ _ )
                                        (DId-Elim-E.transp  z  P ((xc , _) , (_ , z))) d
                                          (DId.sym (DId.trans DId.trans-assoc (DId.trans (DId.ap  a  DId.trans a ) (DId.trans-sym-r _)) DId.trans-β-l)))))
                    eq₁ = EId.trans d₂β (EId.trans DId-Elim-E.transp-trans (DId-Elim-E.ap (DId-Elim-E.transp _ d) (DId.trans-pentagon _)))
                    eq₂ : E.Tm (EId.Id (d₃ _ ) d)
                    eq₂ = EId.trans (EId.ap  k  DId-Elim-E.transp  z  P ((xc , _) , _ , z)) k (DId.trans DId.trans-assoc (DId.trans (DId.ap  a  DId.trans a ) (DId.trans-sym-r _)) DId.trans-β-l))) eq₁)
                                     (EId.trans DId-Elim-E.transp-trans (EId.trans (DId-Elim-E.ap  k  DId-Elim-E.transp  z  P ((xc , _) , _ , z)) d k) (DId.trans-sym-l _))
                                     DId-Elim-E.J-β))
                    eq₃ : E.Tm (EId.Id (DId-Elim-E.J  (z , q)  P ((_ , z) , (_ , q))) (d₃ _ _) (_ , )) d)
                    eq₃ = EId.trans (DId-Elim-E.J  (z , q)  EId.Id (DId-Elim-E.J  (z , q)  P ((_ , z) , (_ , q))) (d₃ _ _) (z , q)) (d₃ z q))
                                                   DId-Elim-E.J-β (_ , ))
                                     eq₂
                    eq₄ : E.Tm (EId.Id (d₄ CId.center) (d₃ _ _))
                    eq₄ = CId-Elim-E.J-β
                    eq₅ : E.Tm (EId.Id (d₅ (_ , (CId.idp , CId-Elim-D.transp-β))) (DId-Elim-E.J  (z , q)  P ((_ , z) , (_ , q))) (d₃ _ _) (_ , CId-Elim-D.transp-β)))
                    eq₅ = DId-Elim-E.J  (z , q)  EId.Id (d₅ (_ , (CId.idp , q))) (DId-Elim-E.J  (z , q)  P ((_ , z) , (_ , q))) (d₃ _ _) (_ , q)))
                          (EId.trans DId-Elim-E.J-β(EId.trans eq₄ (EId.sym DId-Elim-E.J-β)))
                          (_ , CId-Elim-D.transp-β)
                     : E.Tm (EId.Id (d₅ (_ , (CId.idp , CId-Elim-D.transp-β))) d)
                     = EId.trans eq₅ eq₃

module _ {ic jc} {C : Fam {ic} {jc}}  CId : Id-Intro C  where
  instance
    Id-Elim-⊤-l :  {i j}  Id-Elim C (Fam-⊤ {i} {j})
    Id-Elim-⊤-l = _

module _ {ic jc} {C : Fam {ic} {jc}}  CId : Id-Intro C 
         {id jd} {D : Fam {id} {jd}}  DId : Id-Intro D   CId-Elim-D : Id-Elim C D   DId-Elim-D : Id-Elim D D 
         {ie je} {E : Fam {ie} {je}}  EId : Id-Intro E   CId-Elim-E : Id-Elim C E   DId-Elim-E : Id-Elim D E   EId-Elim-E : Id-Elim E E  where
  private
    module C          = Fam C
    module CId        = Id-Intro CId
    module CId-Elim-D = Id-Elim CId-Elim-D
    module D          = Fam D
    module DId        = IdM D _
    module E          = Fam E
    module CId-Elim-E = Id-Elim CId-Elim-E
    module DId-Elim-E = Id-ElimM D E _
    module EId        = IdM E _
    module CDId       = Id-Intro (Id-Intro-∗ {C = C} {D = D})

  instance
    abstract
      Id-Elim-∗-l : Id-Elim C (D  E)
      Id-Elim-∗-l = record { J = λ P (d , e) yp  d₅ _ _ (fst  P) (snd  P) d e yp , e₅ _ _ (fst  P) (snd  P) d e yp
                           ; J-β = λ { {P = P} {d , e}  CId-Elim-D.J-β , eq₃ _ _ (fst  P) (snd  P) d e } }
        where module _ (A : C.Ty) (x : C.Tm A)
                       (Pd : CId.Singl x  D.Ty) (Pe : (yp : CId.Singl x)  D.Tm (Pd yp)  E.Ty)
                       (d : D.Tm (Pd CId.center)) (e : E.Tm (Pe CId.center d)) where
                d₅ :  (yp : CId.Singl x)  D.Tm (Pd yp)
                d₅ (y , p) = CId-Elim-D.J Pd d (y , p)
                e₄ :  z q  E.Tm (Pe _ z)
                e₄ z q = DId-Elim-E.transp  z  Pe CId.center z) e {y = z} q
                e₅ :  (yp : CId.Singl x)  E.Tm (Pe yp (d₅ yp))
                e₅ (y , p) = CId-Elim-E.J  yp  Pe yp (d₅ yp)) (e₄ _ (DId.sym CId-Elim-D.J-β)) (y , p)

                eq₀ : E.Tm (EId.Id (DId-Elim-E.transp (Pe CId.center) (e₄ _ DId.idp) (DId.sym DId.idp)) e)
                eq₀ = DId-Elim-E.transp  z  EId.Id (DId-Elim-E.transp (Pe CId.center) (e₄ _ DId.idp) z) e)
                        (EId.trans DId-Elim-E.J-β DId-Elim-E.J-β) (DId.sym DId.sym-β)
                eq₁ : E.Tm (EId.Id (DId-Elim-E.transp (Pe CId.center) (e₄ (d₅ CId.center) (DId.sym CId-Elim-D.J-β)) (DId.sym (DId.sym CId-Elim-D.J-β))) e)
                eq₁ = DId-Elim-E.J  (_ , q)  EId.Id (DId-Elim-E.transp (Pe CId.center) (e₄ _ q) (DId.sym q)) e)
                        eq₀ (_ , _)
                eq₂ : E.Tm (EId.Id (DId-Elim-E.transp (Pe CId.center) (e₄ (d₅ CId.center) (DId.sym CId-Elim-D.J-β)) CId-Elim-D.J-β) e)
                eq₂ = DId-Elim-E.transp  z  EId.Id (DId-Elim-E.transp (Pe CId.center) (e₄ (d₅ CId.center) (DId.sym CId-Elim-D.J-β)) z) e)
                        eq₁ (DId.sym-sym _)
                eq₃ : E.Tm (EId.Id (DId-Elim-E.transp (Pe CId.center) (e₅ CId.center) CId-Elim-D.J-β) e)
                eq₃ = EId.transp  z  EId.Id (DId-Elim-E.transp (Pe CId.center) z CId-Elim-D.J-β) e)
                        eq₂ (EId.sym CId-Elim-E.J-β)


-----------------------------------------------------------------------------------
--- Derivation of identity type elimination structure on families of telescopes ---
-----------------------------------------------------------------------------------

module Id-Tele-Self {ic jc} (C : Fam {ic} {jc})  CId : Id-Intro C   CId-Elim-C : Id-Elim C C  where
  private
    module C   = Fam C
    module CId = IdM C _

  Id-Intro-LIxTele : (n : )  Id-Intro (LIxTele n C)
  Id-Elim-LIxTele-Base : (n : )  Id-Elim (LIxTele n C)  CId = Id-Intro-LIxTele n  C

  Id-Intro-LIxTele zero    = _
  Id-Intro-LIxTele (suc n) = Id-Intro-∗  CId = Id-Intro-LIxTele n   CId-Elim-D = Id-Elim-LIxTele-Base n 

  Id-Elim-LIxTele-Base zero    = record { J = λ P d yp  d ; J-β = CId.idp }
  Id-Elim-LIxTele-Base (suc n) = Id-Tele-r.Id-Elim-∗-r _  CId = Id-Intro-LIxTele n   CId-Elim-D = Id-Elim-LIxTele-Base n   CId-Elim-E = Id-Elim-LIxTele-Base n 

  Id-Elim-LIxTele : (n : )  (m : )  Id-Elim (LIxTele n C)  CId = Id-Intro-LIxTele n  (LIxTele m C)  DId = Id-Intro-LIxTele m 
  Id-Elim-LIxTele n zero    = _
  Id-Elim-LIxTele n (suc m) = Id-Elim-∗-l  CId = Id-Intro-LIxTele n   DId = Id-Intro-LIxTele m   CId-Elim-D = Id-Elim-LIxTele n m 
                                           DId-Elim-D = Id-Elim-LIxTele m m   CId-Elim-E = Id-Elim-LIxTele-Base n   DId-Elim-E = Id-Elim-LIxTele-Base m 
  Id-Elim-LIxTele-RBase : (n : )  Id-Elim C (LIxTele n C)  DId = Id-Intro-LIxTele n 
  Id-Elim-LIxTele-RBase zero = _
  Id-Elim-LIxTele-RBase (suc n) = Id-Elim-∗-l  CId = CId   DId = Id-Intro-LIxTele n   CId-Elim-D = Id-Elim-LIxTele-RBase n   DId-Elim-D = Id-Elim-LIxTele n n   DId-Elim-E = Id-Elim-LIxTele-Base n 

  Id-Intro-LIxTele₁ : (n : )  Id-Intro (LIxTele₁ n C)
  Id-Elim-LIxTele₁-Base : (n : )  Id-Elim (LIxTele₁ n C)  CId = Id-Intro-LIxTele₁ n  C

  Id-Intro-LIxTele₁ zero    = record { Id = λ {A} x y  lift (CId.Id {A .lower} x y) ; idp = λ {A} {x}  CId.idp }
  Id-Intro-LIxTele₁ (suc n) = Id-Intro-∗  CId = Id-Intro-LIxTele₁ n   CId-Elim-D = Id-Elim-LIxTele₁-Base n 

  Id-Elim-LIxTele₁-Base zero    = record { J = CId.J ; J-β = CId.J-β }
  Id-Elim-LIxTele₁-Base (suc n) = Id-Tele-r.Id-Elim-∗-r _  CId = Id-Intro-LIxTele₁ n   CId-Elim-D = Id-Elim-LIxTele₁-Base n   CId-Elim-E = Id-Elim-LIxTele₁-Base n 

  Id-Elim-LIxTele₁ : (n : )  (m : )  Id-Elim (LIxTele₁ n C)  CId = Id-Intro-LIxTele₁ n  (LIxTele₁ m C)  DId = Id-Intro-LIxTele₁ m 
  Id-Elim-LIxTele₁ n zero    = let module E = Id-Elim  Id-Intro-LIxTele₁ n  (Id-Elim-LIxTele₁-Base n) in
                               record { J = λ P d yp  E.J  yp  P yp .lower) d yp ; J-β = λ {A} {x} {P} {d}  E.J-β }
  Id-Elim-LIxTele₁ n (suc m) = Id-Elim-∗-l  CId = Id-Intro-LIxTele₁ n   DId = Id-Intro-LIxTele₁ m   CId-Elim-D = Id-Elim-LIxTele₁ n m 
                                            DId-Elim-D = Id-Elim-LIxTele₁ m m   CId-Elim-E = Id-Elim-LIxTele₁-Base n   DId-Elim-E = Id-Elim-LIxTele₁-Base m 

module Id-Tele {ic jc id jd} (C : Fam {ic} {jc})  CId : Id-Intro C  {{CId-Elim-C : Id-Elim C C}}
                             (D : Fam {id} {jd})  DId : Id-Intro D  {{CId-Elim-D : Id-Elim C D}} {{DId-Elim-D : Id-Elim D D}} where
  private
    module C        = Fam C
    module CId      = Id-Intro CId
    module DId      = Id-Intro DId
    module CId-Tele = Id-Tele-Self C
    module DId-Tele = Id-Tele-Self D

  Id-Elim-LIxTele-Base : (n : )  Id-Elim (LIxTele n C)  CId = CId-Tele.Id-Intro-LIxTele n  D  DId = DId 
  Id-Elim-LIxTele-Base zero    = record { J = λ P d yp  d ; J-β = DId.idp }
  Id-Elim-LIxTele-Base (suc n) = Id-Tele-r.Id-Elim-∗-r _  CId = CId-Tele.Id-Intro-LIxTele n   CId-Elim-D = CId-Tele.Id-Elim-LIxTele-Base n   CId-Elim-E = Id-Elim-LIxTele-Base n 

  Id-Elim-LIxTele : (n : )  (m : )  Id-Elim (LIxTele n C)  CId = CId-Tele.Id-Intro-LIxTele n  (LIxTele m D)  DId = DId-Tele.Id-Intro-LIxTele m 
  Id-Elim-LIxTele n zero    = _
  Id-Elim-LIxTele n (suc m) = Id-Elim-∗-l  CId = CId-Tele.Id-Intro-LIxTele n   DId = DId-Tele.Id-Intro-LIxTele m   CId-Elim-D = Id-Elim-LIxTele n m 
                                           DId-Elim-D = DId-Tele.Id-Elim-LIxTele m m   CId-Elim-E = Id-Elim-LIxTele-Base n   DId-Elim-E = DId-Tele.Id-Elim-LIxTele-Base m