
Relative induction principles for second-order
generalized algebraic theories

RAFAËL BOCQUET

SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

EÖTVÖS LORÁND UNIVERSITY
DOCTORAL SCHOOL OF INFORMATICS

Contents

1 Introduction 1
1.1 Conservativity conjectures . 2
1.2 Type theory as algebraic theories . 3

1.2.1 Algebraic theories and generalizations 4
1.2.2 Generalized algebraic presentations of type theories 6
1.2.3 Second-order algebraic theories and higher-order abstract syntax 7
1.2.4 Other general definitions of dependent type theory 8

1.3 The metatheory of type theories, algebraically 9
1.3.1 Other approaches . 10

1.4 Overview of the thesis . 11
1.4.1 A 1-categorical presentation of functorial semantics 11
1.4.2 Reduction from SOGATs to GATs 12
1.4.3 Internal algebras of SOGATs and relative induction principles . . 13
1.4.4 Applications of relative induction principles 14

2 Categorical preliminaries 16
2.1 Notations and required background . 16
2.2 Displayed categories . 17
2.3 Categories of presheaves and their internal language 20

2.3.1 Multimodal type theory . 21
2.3.2 Axiomatization in multimodal type theory 23
2.3.3 Universes in presheaf categories 25
2.3.4 Local representability . 27
2.3.5 Levelwise decidable propositions 31

2.4 Factorization systems . 32

3 Categorical models of type theory 37
3.1 Categories with families . 37

3.1.1 Categories with families . 37
3.1.2 Contextuality . 38
3.1.3 Democracy . 40
3.1.4 Trivial fibrations . 40
3.1.5 Renamings . 41

3.2 Type structures . 43
3.2.1 Dependent sums . 43
3.2.2 Equality types . 44
3.2.3 Dependent products . 44
3.2.4 Correspondences with classes of categories 44

3.3 CwFs with first-order dependent products 45

i

CONTENTS ii

3.3.1 Definition . 45
3.3.2 Pseudo-morphisms . 46
3.3.3 CwFs with base types . 49

4 First-order generalized algebraic theories 52
4.1 Definition and examples . 54
4.2 Functorial semantics . 57

4.2.1 Categories of algebras . 58
4.2.2 The reflective embedding of algebras into presheaves 59
4.2.3 Displayed algebras . 61
4.2.4 Adjunction induced by GAT morphisms 62

4.3 Internal algebras . 63
4.3.1 Definitions . 63
4.3.2 CwFs of internal algebras . 65

4.4 Finitely generated algebras . 67
4.5 Trivial fibrations . 69
4.6 Congruences and fibrant congruences . 70

5 Second-order generalized algebraic theories 74
5.1 Definition and examples . 74
5.2 Functorial semantics and reduction to GATs 77
5.3 Contextual algebras . 80

5.3.1 Explicit description of the contextual core 82
5.3.2 The GAT of contextual algebras . 84

6 Relative induction principles 88
6.1 Contextualization . 90

6.1.1 Displayed contextualization . 91
6.2 Application: canonicity . 96

6.2.1 The canonicity higher-order model 96
6.2.2 The canonicity result . 98

6.3 Relative induction principles . 99
6.3.1 Relative induction principle over renamings 104

6.4 Application: normalization for MLTT and decidability of equality 107
6.4.1 Normal forms . 107
6.4.2 The normalization displayed higher-order model 110
6.4.3 Normalization function . 114
6.4.4 Uniqueness of normal forms . 114
6.4.5 Decidability of equality . 116

6.5 Application: normalization for extensions of MLTT 117
6.5.1 Extension: Strict algebras . 117
6.5.2 Extension: Strict functoriality . 119
6.5.3 Discussion: normalization in presence of non-linear equations . . 120

6.6 Application: conservativity of two-level type theory 122

A Equalities in the total spaces of indexed W-types 130
A.1 Endofunctors . 130
A.2 Indexed containers . 132

Chapter 1

Introduction

This thesis is a contribution towards the goal of having general mathematical tools
for the metatheory of dependent type theories. Type theorists study many different
type theories, including Martin-Löf type theory (MLTT), homotopy type theory (HoTT),
observational type theory, cubical type theory, simplicial type theory, modal and multi-
modal type theories, etc. Each type theory listed above is not quite a single type theory,
but rather a family of type theories which differ in more minor ways: Do we have an
η-rule for Π-types or for Σ-types? Do we have W-types or more general inductive types?
Do we have universes with first-class universe levels? Do we have some form of equality
reflection?

We want to be able to reuse the same mathematical framework when studying differ-
ent type theories, so as to be able to focus on the specificities of the type theory under
consideration, and modularly extend results to other type theories. More importantly,
we do not want to study type theories in isolation, but also understand how they can be
compared. At the very least, we want to assemble them into a category of type theories.

Dependent type theories are used for two main purposes, which are related but
distinct:

• They are used as general formal frameworks that can express most mathematics,
and as the core languages of proof assistants such as Agda (Agda Developers 2025),
Lean (Moura and Ullrich 2021) or Rocq (The Rocq Development Team 2025).

• Some type theories are the internal languages of some mathematical structures,
more commonly classes of categories or ∞-categories. For example, extensional
type theory can be interpreted in any topos, and homotopy type theory can be
interpreted into ∞-toposes.

Most of the time, when using internal languages, we use the internal language of a
topos or ∞-topos (this can require embedding a category into a larger category that
is a topos, e.g. using the Yoneda lemma). The strength of internal languages is that
constructive mathematics can be interpreted in the internal language of a topos;
we can work in the internal language with the mathematical intuitions acquired
from ordinary mathematics.

These two purposes approximately correspond to the use of type theory to express
analytic and synthetic mathematics. When doing synthetic mathematics by working
in an internal language, one is often interested in the interpretation of the internal
development in a model that has been defined analytically. 1

1A current shortcoming of proof assistants is that while they are often used for either general math-

1

CHAPTER 1. INTRODUCTION 2

There are at least two reasons that motivate the study of various type theories, rather
than a single type theory. One is that the use of type theories as internal languages
often require specific type theories, especially if one wants the type theory to have good
computational behavior. For example HoTT as defined in the HoTT book (Univalent
Foundations Program 2013) is essentially an extension of MLTT by the univalence axiom,
and shares many of the properties of MLTT. However, if one wants a type theory with
(strict) canonicity, we have to move to cubical type theory. The other reason is that there
is a tension between using type theory as a language for mathematics, and doing the
semantics of type theory. When studying a type theory, it helps to have a type theory
that is as simple as possible; when using a type theory, it helps to have a type theory
that is as expressive as possible, which usually means a more complex type theory.

1.1 Conservativity conjectures

The starting point for most of my research has been a conjecture proposed at TYPES
2017 by Altenkirch, Capriotti, et al. (2017). Although very little of the content of this
document is directly related to that conjecture, most of it has been motivated by it, and
it seems appropriate to start this introduction by a short discussion of the conjecture.

One of the main motivation for cubical type theory is to provide a computational
interpretation of univalence. Homotopy type theory does not satisfy strict canonicity,
as the univalence axiom blocks computation. In cubical type theory, univalence is not
an axiom, but a theorem derived from primitives that admit computational content. It
has been proven that cubical type theory satisfies strict canonicity and normalization,
and proof assistants for cubical type theory have been implemented. Thus, it should be
possible to take a term written in HoTT, interpret it in cubical type theory (or copy it in a
cubical proof assistant), and compute with the resulting term in cubical type theory.

For early variants of cubical type theory, this was however not possible, due to a
mismatch between the identity types of cubical type theory (which are defined as path
types, whose elements are maps from the cubical interval to some other type), and
the identity type of HoTT (defined as an indexed inductive family, or at least with the
corresponding induction principle, called the J-rule).

While path types satisfy the elimination principle of the identity types, they do
not satisfy its computation rule (the Jβ-rule). More precisely, they only satisfy a weak
version of the computation rule, which holds up to an identification instead of holding
judgmentally. This is related to the problem of regularity in semantic models of cubical
type theory. As a result, there is no easy way to interpret HoTT into cubical type theory.
It is possible to circumvent this problem using ideas of Swan (2018), who showed how
to have both path types and identity types in semantic models of cubical type theory.

In practice however, it seems possible to do everything without the judgmental Jβ-
rule. This lead Altenkirch, Capriotti, et al. (2017) to pose the following conjecture: is type
theory with the judgmental Jβ-rule conservative over type theory with the weak Jβ-rule.
More generally, we can consider arbitrary computation rules, and try to compare the
judgmental variant with the weak variant. For example, one can consider variants of
HoTT or MLTT with weak β- and η- rules for Π- and Σ- types, with universes weakly à

ematical proofs, or for proofs in an axiomatized internal language, we lack the means to interpret the
internal constructions in external models. One could imagine that this could be achieved by having the
proof assistant for the internal language produce a certificate that is then imported in the proof assistant for
the external constructions. Alternatively, one could have a proof assistant that understands the interface
between internal and external constructions.

CHAPTER 1. INTRODUCTION 3

la Tarski, etc. Going in the other direction, one can consider variants of HoTT or MLTT
with additional computation rules and definitional equalities, for example by adding a
universe of strict propositions (as done by Gilbert, Cockx, Sozeau, and Tabareau (2019)),
natural numbers with a strict semi-ring structure, identity types with a strict 1-groupoid
structure, etc.

In order to study this family of conservativity conjectures in full generality, it becomes
essential to have a formal definition of type theory. The conservativity conjectures can
then be stated as properties of morphisms Tw → Ts between a weak type theory Tw and
a strong type theory Ts. Slightly more precisely, assuming that the type theories have
homotopical content in the sense of Kapulkin and Lumsdaine (2016), we want Tw → Ts
to be a Morita equivalence in the sense of Isaev (2018).

In this thesis, I won’t go into the homotopy theory of type theories (except for en
passant definitions of some (cofibrations, trivial fibrations) weak factorization systems).

1.2 Type theory as algebraic theories

Traditionally, the syntax of type theory is described by collection of inference rules
(including typing rules, conversion and rewriting relations, etc.). This is sometimes
called presyntax, leaving the denomination of syntax to the quotient of well-typed terms
by conversion relations. The semantics are studied using various approaches, including
through the definition of categorical models of type theory. Properties of the syntax are
typically proven by induction on typing derivations.

A more modern approach is to define the syntax through the semantics; the syntax is
defined as the initial model, which is known to exist thanks to general initiality theorems
from category theory, and which is unique (up to isomorphism). Equivalently, the syntax
can be defined as a QIIT (quotient inductive-inductive type), which are closely related
to the general initiality theorems. This syntax can be called algebraic syntax, since it is
defined as the initial algebra of a (generalized) algebraic theory.

There has been a bit of debate, among type theory researchers, whether defining the
syntax through initiality is a satisfactory approach. There is quite a gap between that
syntax and the internal syntax used in the implementations of proof assistants. It can
be proven that one can recover the initial model by quotienting the extrinsically-typed
presyntax by its conversion relation. Streicher (1991) proved this result for a variant of
the calculus of constructions. De Boer and Brunerie proved (De Boer 2020; Brunerie 2020),
and formalized in Agda, another version of this result for a different type theory. That
second proof was a consequence of the Initiality Project (Shulman 2018), an initiative to
clarify matters after concerns raised by Voevodsky.

My stance is that the extrinsically-typed syntax is not necessarily closer to what
happens in proof assistants, and it is expected that the structures that are most efficient
for algorithms and implementations differ from the structures that are most efficient
for proofs. As algebraic syntax is well-suited for proofs and presents other advantages,
we shall work only with algebraic syntax. Note however that it is possible to reduce
some finitary QIITs to quotients of IITs, a result which is similar to initiality theorems;
the IITs that are generated when applying these constructions to our preferred notion
of model (categories with families) correspond to the syntax with explicit substitutions
and explicit coercions of Chapman (2008).

We will consider a class of type theories that can be described by second-order general-
ized algebraic theories, or SOGATs. They were introduced by Uemura (2019) and Uemura

CHAPTER 1. INTRODUCTION 4

(2021). We now review algebraic theories, their generalizations and semantics, building
up to SOGATs.

1.2.1 Algebraic theories and generalizations

In universal algebra, algebraic theories are descriptions of mathematical structures con-
sisting of sets equipped with some first-order operations and subject to some equations.
Typical examples include monoids, groups, rings, etc. A non-example is the theory
of fields: in a field, the inverse operation is partial, being only defined for non-zero
elements. This partial operation cannot be part of an algebraic theory, especially because
being non-zero is a negative condition.

Algebraic theories are often presented by a syntactic signature: a listing of its defin-
ing operations and equations. For example, the theory of monoids has the following
signature:

X : Set,
e : X,
m : X → X → X,
m(e, x) = x,
m(x, e) = x,
m(x, m(y, z)) = m(m(x, y), z).

The above can be read as the usual definition of monoid, but should instead be under-
stood syntactically. The theory of monoids has a sort X, an operation symbol e of arity
0, an operation symbol m of arity 2, and three equations (given by pairs of their left-
and right-hand sides, which are first-order terms built from the operations symbols and
variables).

In his doctoral thesis, Lawvere (1963) has developed the categorical study of (single-
sorted) algebraic theories and functorial semantics. Lawvere’s notion of algebraic theory
(now called Lawvere theory) is a certain T with finite limits, an algebra is a functor T →
Set that preserves finite limits, and a morphism of algebras is a natural transformation
between such functors. This is a presentation-independent notion of theory: the same
Lawvere theory may have multiple presentations, and the Lawvere theory can be
reconstructed from its category of algebras.

There is a hierarchy of classes of algebraic theories and generalization thereof, with
functorial semantics in various categories.

• Both single-sorted and multisorted algebraic theories have functorial semantics in
the 2-category of categories with finite products.

The finite products are used to construct objects corresponding to arities of op-
erations; a constant e : X becomes a morphism e : 1 → X, a binary operation
m : X → X → X becomes a morphism m : X× X → X.

• Essentially algebraic theories have functorial semantics in finitely complete cate-
gories.

Essentially algebraically allow for operations with equational constraints, such
as composition in a presentation of categories with a non-dependent sort of mor-

CHAPTER 1. INTRODUCTION 5

phisms and source and target maps:

Ob,Hom : Sort,
s, t : Hom→ Ob,
comp : (f , g : Hom)× (t(f) = s(g))
→ {h : Hom | s(h) = s(f)× t(h) = t(g)}.

Semantically, equalizers are used to interpret the equational constraints, e.g. (f , g :
Hom)× (t(f) = s(g)) is the equalizer of morphisms s, t : Hom→ Ob.

• Generalized algebraic theories have functorial semantics in clans, which are cat-
egories equipped with a class of morphisms called fibrations or display maps,
required to be stable under pullbacks.

Generalized algebraic theories allow for dependent sorts. An example is a defini-
tion of categories in which morphisms depend on their source and target:

Ob,Hom : Set,
Hom : Ob→ Ob→ Set,
comp : (x, y, z : Ob)×Hom(x, y)×Hom(y, z)→ Hom(x, z).

Semantically, the dependent sorts are interpreted by fibrations into their base, e.g.
pHom : Hom ↠ Ob×Ob. The operations are then interpreted as sections of such
fibrations, e.g. comp is interpreted as a section of Hom×Ob Hom ↠ Hom.

It is sometimes said that essentially algebraic theories and generalized algebraic
theories are equivalent because have the same expressive power. What is meant is
that a category is the category of algebras of an EAT if and only if it is the category of
algebras of a GAT. Any GAT can be translated to an EAT by replacing every dependent
sort B : A → Set by a non-dependent sort ΣB : Set together with a projection map
pB : ΣB→ A. An operation

f : (a : A)→ B(a)→ C(a)

then corresponds to a partial operation

f : (a : A)(b : ΣB)→ (pB(b) = a)→ {c : C | pB(c) = a}.

Conversely, any EAT can be translated to a GAT by introducing an equality sort EqA :
A → A → Set for every sort A, together with rules inducing a logical equivalence
EqA(x, y) ∼= (x = y).

However, multiple non-equivalent GATs can correspond to the same EAT; even
though the Set-valued algebras are the same, algebras valued in categories with a class
of fibrations (say simplicial sets) can be different, because the dependent sorts of a GAT
need to be sent to fibrations. Thus the distinction between EATs and GATs becomes
important when considering homotopical structures.

We can also understand this from the point of view of the “language of the theory”.
The idea of the “language of category theory” is that since mentioning equalities between
objects breaks invariance under isomorphisms between objects and under equivalences
of categories, it should not be possible to even talk about equalities between objects. This
corresponds to the fact that the GAT of categories does not include a sort of equalities

CHAPTER 1. INTRODUCTION 6

between objects. Because we want equalities between morphisms to be part of the
language of category theory, we include it in the presentation of the GAT of categories.

The informal notion of “language of a theory” can be made formal in various ways.
One such formalization is the first-order logic with dependent sorts (FOLDS) of Makkai
(1995). Henry (2020) explained how GATs, FOLDS and homotopy theory are related.

1.2.2 Generalized algebraic presentations of type theories

Type theories can be presented by generalized algebraic theories. More precisely, there
are notions of models of type theory that are the algebras of some GAT, and the syntax
of type theory is the initial algebra of that GAT.

Many definitions of categorical models of type theory exist in the literature. They
can be classified along two dimensions:

1. Whether types are additional structure (there is a set of types over any contexts) or
specified by a class of maps (which called display maps; types over a context are
then identified with display maps into that context). In the former case, substitution
is strictly functorial, whereas in the latter case substitution is usually only pseudo-
functorial.

2. Whether the objects of the underlying category are generated by the empty context
and extensions, in which case we say that the model is contextual (Cartmell 1986)
or democratic (Clairambault and Dybjer 2014).

This gives a partition of the notions of models into four classes.

• In Categories with Families (Dybjer 1995) and natural models (Awodey 2018), we
have sets of types, and we have arbitrary contexts.

• In display map categories (Taylor 1999), types are induced by a class of maps and
contexts can be arbitrary.

• In contextual categories (Cartmell 1986), also called C-systems (Voevodsky 2016),
in B-systems (Voevodsky 2014) and in democratic CwFs (Clairambault and Dybjer
2014), we have sets of types, and contexts are (either strictly equal to or isomorphic
to) iterated extensions of the empty context.

• In clans (Joyal 2017), types induced by a class of maps and contexts coincide with
types over the empty context.

There are meaningful differences between the different classes; they are useful for
different applications. However different notions within the same classes are equivalent,
and the choice between the different notions is mostly a matter of preference.

In this thesis, we will mainly use categories with families, abbreviated as CwF, which
were introduced by Dybjer (1995). They can be presented by a generalized algebraic
theory with four sorts (any many operations and equations):

Ob : Set, (Objects or contexts)
Hom : Ob→ Ob→ Set, (Morphisms or substitutions)
Ty : Ob→ Set, (Types)
Tm : (Γ : Ob)→ Ty(Γ)→ Set. (Terms)

CHAPTER 1. INTRODUCTION 7

In fact, categories with families do not quite respect the previous discussion about
languages of GATs, in the sense that there is a mismatch between the language of the
GAT of CwFs and the “language of type theory”. Indeed, contexts and substitutions
are not really part of the language of type theory, but are included because they are
necessary to describe dependent types.

Because of this, we sometimes also have to consider a second notion of categorical
models: contextual CwFs (introduced as contextual categories by Cartmell (1986), also
called C-systems by Voevodsky (2016)). Contextual CwFs can also be presented as a
generalized algebraic theory, which has the disadvantage of requiring an infinite amount
of sorts and operations. However the language of the GAT of contextual CwFs is a
more accurate description of the “language of type theory”. From some point of view,
contextual CwFs are morally the correct notion of model, but CwFs are more convenient.

At the homotopical level, this phenomenon can be seen in the fact that Kapulkin and
Lumsdaine (2016) construct a (left semi)-model structure over contextual CwFs, rather
than over CwFs.

Another possible approach could be to define CwFs as a theory in which the sorts Ty
and Tm are fibrant, but the sorts Ob and Hom are not. This would require an alternative
notion of theory, that lies somewhere between EATs and GATs. We won’t explore this
other notion of theory.

1.2.3 Second-order algebraic theories and higher-order abstract syntax

Second-order algebraic theories, introduced by Fiore and Mahmoud (2010) (after earlier
work by Fiore and Hur (2010)), are a generalization of algebraic theories that is meant to
describe languages with bindings. This is achieved by allowing second-order operations,
whose domain is a first-order arity.

For example, untyped lambda calculus can be presented by the following signature:

tm : Sort,
app : tm→ tm→ tm,
lam : (tm→ tm)→ tm,
β : app(lam(b), a) = b(a),
η : lam(λx 7→ app(f , x)) = f .

Here lam is a second-order operation, whose domain (tm→ tm) is first-order, indicating
that lam binds a variable.

Second-order operations are closely related to the ideas of logical frameworks (Harper,
Honsell, and Plotkin 1993), which are also frameworks used for the definition of syntax
with bindings, in which the binders are represented by functions in the logical frame-
work. The ideas behind logical frameworks is also referred to as higher-order abstract
syntax (HOAS).

The sort tm in the above signature should not be seen as a set of terms, and (tm→ tm)
should not be seen as a function between sets. Instead, it should only be possible to
construct elements of (tm → tm) that correspond to terms over an additional bound
variable. A semantic explanation of this phenomenon was given by Hofmann (1999):
tm is interpreted by a representable presheaf over a category of contexts. Hofmann
observes that the exponential presheaf (tm → tm) then admits a simple description:
(tm → tm)(Γ) = tm(Γ × T), where T is the object representing tm. In other words,
elements of (tm→ tm) at a context Γ really correspond to terms in an extended context
Γ× T. This generalizes to dependently-typed settings.

CHAPTER 1. INTRODUCTION 8

The restriction from higher-order to second-order is due to the fact that we have to
specify ahead of time which sorts can be used to bind variables; just because we can
bind variables of sort tm does not mean that we can bind variables of sort (tm→ tm).
What is gained from this restriction is the ability to define not only syntax, but a whole
category of algebras.

The second-order generalized algebraic theories of Uemura (2019) generalize second-
order algebraic theories by allowing dependent sorts. In SOGATs, we also have a
distinction between general sorts and representable sorts, only the representable sorts
can be used for variables in binders.

As a SOGAT, the signature for a dependent type theory with Π-types is as follows:

ty : Sort,
tm : ty→ Sortrep,
Π : (A : ty)(B : tm(A)→ ty)→ ty,
app : (A : ty)(B : tm(A)→ ty)→ tm(Π(A, B))→ (a : tm(A))→ tm(B(a)),
lam : (A : ty)(B : tm(A)→ ty)→ ((a : tm(A))→ tm(B(a)))→ tm(Π(A, B)),
β : app(A, B, lam(A, B, b), a) = b(a),
η : lam(A, B, λx 7→ app(A, B, f , x)) = f .

As only tm is a representable sort, this type theory supports extensions of contexts by
term variables ((Γ, a : A)), but not by type variables ((Γ, A type)).

Uemura defined the semantics of SOGATs as functorial semantics in the 2-category
of representable map categories, which are finitely complete categories equipped with an
additional class of representable maps, corresponding to the representable sorts.

Any SOGAT can also be seen as a higher-order theory, in which there are no restric-
tion on the order of operations. These have functorial semantics in LCCCs. Gratzer and
Sterling (2020) have proposed to use LCCCs as a simpler framework for the general
semantics of type theory. While functorial semantics in LCCCs is indeed simpler than
functorial semantics in representable map categories, and sufficient for many applica-
tions, higher-order theories do not really have categories of algebras; there are many
aspects of the semantics of SOGATs that cannot be studied at the level of higher-order
theories.

1.2.4 Other general definitions of dependent type theory

In addition to SOGATs, other general definitions of dependent type theory have been
proposed and studied.

Isaev (2016) gives a general definition of type theory as a class of essentially algebraic
theories extending the essentially algebraic theory of contextual categories, with the
constraint that all added symbols interact with substitution.

Haselwarter and Bauer (2023) give a general definition of type theory (based on
earlier work by Bauer, Haselwarter, and Lumsdaine (2020)) based on the presentation of
type theories with inference rules. The goal is to have a general definition that is closely
related to the traditional definitions of type theories using typing relations, yet can be
used to prove general metatheorems (uniqueness of typing, etc.) that are often tedious
to prove for concrete type theories.

Previous approaches, notably logical frameworks, could be used to specify the syntax
of dependent type theories, but not the semantics. Moreover, they were not seen as a
way to define the syntax, but rather as a way to represent it; adequacy theorems would

CHAPTER 1. INTRODUCTION 9

be proven, providing a (bijective) correspondence between the components of the LF
and conventionally defined syntax.

1.3 The metatheory of type theories, algebraically

Once a precise general definition of type theory is chosen, one wants to use it to prove
metatheoretic results about the syntax and semantics of type theory. Metatheory gen-
erally refers to any theorem proven externally about the type theory (as opposed to
theorems proven internally to the type theory). More specifically, it often refers to the
properties of the syntax that are needed to justify that a type theory is well-behaved.

• Consistency: there is no closed term of type ⊥.

• Canonicity: every closed term of the boolean type or natural number type computes
to an actual boolean or an actual natural number.

• Normalization: every term (in any context) admits a unique normal form (for a
suitable notion of normal form).

This has to be distinguished from weak normalization and strong normalization,
which only make sense for type theories equipped with a reduction relation on
(pre)terms.

• Some properties are often obtained as a consequence of normalization:

– Decidability of equality.

– Decidability of type checking.

– Injectivity of type formers.

We want to establish these properties algebraically, meaning that we can only rely
on the initiality of the syntax. In order to prove anything about the syntax, one has to
construct another model, interpret the syntax into that model using initiality, and derive
the desired property from the interpretation.

The main method that has emerged for constructing the relevant models involves
logical relations and categorical gluing.

• Logical relations involve an interpretation of a type A as a family Tm(−, A)→ Set
indexed by terms of type A over some context. The family can be a family of sets
as above, a family of propositions Tm(−, A)→ Prop, or a family valued in another
semantic domain.

• Categorical gluing involves the construction of a model whose underlying category
is a comma category associated to a functor F : C → D. Typically C is a syntactic
category and D is a more semantic category. Then the objects of the glued category
are triples (x, y, α), where x ∈ C, y ∈ D and α : y → F(x). This is a way to glue
together syntax and semantics.

• Sconing is a special instance of categorical gluing over the global sections functor

Γ 7→ C(1, Γ).

This means that objects are interpreted by triples (Γ, Y, p) where Y is a set and

p : Y → C(1, Γ).

CHAPTER 1. INTRODUCTION 10

Equivalently, objects can be seen as pairs (Γ, Γ′) where

Γ′ : C(1, Γ)→ Set

is a family of sets. Elements γ : C(1, Γ) are “closing substitution”, and elements
γ′ : Γ′(γ) can often be seen as “evaluation environments”; assigning a semantic
value to every variable in Γ.

Categorical gluing and logical relations are closely related, and arguably the same
construction if types are seen as objects in a slice category. They will however be
considered separately in this thesis; logical relations involve types while gluing involves
contexts.

For non-dependent type systems, the logical relations are usually defined by induc-
tion on the structure of types prior to the definition of the rest of the model. In dependent
type theory, the interpretation of types has to be given mutually with the rest of the
model.

Algebraic or reduction-free proofs of normalization have been given for simply typed
lambda calculus by Altenkirch, Hofmann, and Streicher (1995) and for system F by the
same authors (1997). An algebraic proof of normalization for a dependent type theory
without universes was given by Altenkirch and Kaposi (2017), and also formalized in
Agda.

Coquand (2019) gave an algebraic and reduction-free proof of normalization for a de-
pendent type theory with universes. The normalization proof involves the construction
of a gluing model.

The construction of these gluing models requires in principle to check many natural-
ity conditions: all components of the model need to respect substitutions, and moreover
many of the subconstructions need to be stable under renamings. While checking these
conditions can be seen as routine verifications, they are not easy to check fully explicitly.
It also seemed that Coquand’s model could be factored as the composition of multiple
constructions. This has led type theorists to seek alternative ways to present the model,
that would isolate the core of the normalization proof from the rest of the construction;
with the hope of obtain tools that could be reused for other applications.

Naturality and functoriality conditions can often be checked automatically by using
the internal language of presheaf toposes. In this case, we want to use both presheaves
over the syntactic category, and presheaves over its category of renamings.

Sterling (2022) has developed synthetic Tait computability (STC). This involves the
internal language of a glued topos, which contains two base toposes as open/closed
subtoposes. In the internal language of the glued topos, one has access to a pair of
open/closed modalities, which can be used to access the internal languages of the
two subtoposes and express constructions that involve interactions between the two
subtoposes. This has notably been employed to prove normalization for cubical type
theory (Sterling and Angiuli 2021).

1.3.1 Other approaches

Other approaches to the metatheory of type theory exist, that rely on other, usually
non-algebraic, presentations of the syntax and semantics of type theory.

It should be noted that (strong) normalization and reduction-free normalization are
not the same result, and normalization results for different presentations of the syntax
are not the same result; different normalization theorems are not trivially interderivable.

CHAPTER 1. INTRODUCTION 11

A proof of normalization for dependent type theory with a predicative hierarchy
of universes and dependent function types with both β- and η- rules was given in
the Habilitation thesis of Abel (2013). The proof involves normalization by evaluation
into an inductively defined semantic domain, and partial equivalence relations on that
semantic domain.

Abel, Öhman, and Vezzosi (2017) give another proof of normalization and of the
decidability of equality. Their proof is also fully formalized in Agda.

Adjedj et al. (2024) give a proof similar to the one of Abel, Öhman, and Vezzosi (2017),
and formalize it in Coq. In particular, they present a way to remove induction-recursion
from the proof, thus proving the result in a weaker metatheory.

While proofs of strong normalization and proofs of reduction-free normalization
both use logical relations, the logical relations do not quite serve the same purpose. In
presence of a deterministic reduction relation, the computational behavior is already
fully specified by the reduction, and the goal is to prove that reduction terminates and
that equality of normal forms coincides with equality of terms. The logical relations are
used to prove these properties. In the reduction-free setting, the logical relations are
used to construct a function that assigns a normal form to every term; thus it plays the
role of both the reduction relation and the logical relation from the reduction-full setting.

1.4 Overview of the thesis

I now present the main contributions of the thesis.

1.4.1 A 1-categorical presentation of functorial semantics

I will present the semantics of GATs as functorial semantics in the 1-category of Σ-CwFs
(which are the models of a dependent type theory with Σ- and 1- types). A more usual
presentation of functorial semantics would take place in a 2-category of categories with
additional structure, such as the 2-category of clans.

The main difference lies in the choice between preserving structure, such as finite
limits, weakly or strictly. In the 1-category of Σ-CwFs, the Σ-types are preserved strictly,
while the corresponding finite limits is preserved weakly by morphisms of clans.

Ultimately, the two possible presentations are related by the fact that Σ-CwFs ought
to be a 1-categorical presentation of the 2-category of clans, in the sense that there should
be a model structure on CwFΣ that presents the (2, 1)-category of clans, and CwFΣ has
arrow-objects that classify the additional (non-invertible) 1-cells in the 2-category of
clans.

The choice of working with 1-categorical notions was originally motivated by the
fact that CwFΣ is itself the category of algebras of a GAT (and of a SOGAT). This means
that we can reuse the semantics of general GATs to study CwFΣ.

In addition to the original motivation, this proved to have other advantages:

• In practice, GATs are not defined by explicitly constructing Σ-CwFs, but by writing
a signature S that presents a Σ-CwF 0CwFΣ [S]. In particular, we will see how QIIT-
signatures from Kaposi, Kovács, and Altenkirch (2019) present GATs. Because
signatures are usually syntactic and quite strict, having a stricter notion of theory
makes their interpretation easier.

Moreover, 0[S] then satisfies a 1-categorical property that determines 0[S] → E
up to isomorphism (of sets), rather than up to equivalence of category. Thanks

CHAPTER 1. INTRODUCTION 12

to this, the category of algebras of the theory is determined up to isomorphism,
rather than up to equivalence, and its components can be computed exactly from
the structure of the signature S. This can be relevant when doing computations for
a concrete signature S.

• One is often interested in functors involving CwFΣ, and in their left or right adjoints
when they exist. In particular, translations between theories (e.g. from SOGATs to
GATs, or from a GAT T to the GAT of morphisms between T -algebras, etc.) can
be described by such adjunctions. Working 1-categorically means that it is easier
to obtain these adjunctions, which are often themselves induced by morphisms
between GATs.

• One may be interested in generalizing GATs to ∞-EATs or ∞-GATs. These should
have higher-categorical functorial semantics in finitely complete ∞-categories, or
variants thereof. Finitely complete ∞-categories can be described 1-categorically
as CwFs with Σ- and Id- types. By considering the 1-category CwFΣ, it makes it
easier to compare GATs and ∞-GATs, by comparing CwFΣ and CwFΣ,Id.

The price to pay is that not every CwFΣ can be seen as a GAT. Morphisms in CwFΣ are
only well-behaved when they have a cofibrant source. Because the functorial semantics
are defined through morphisms out of the theory, we need to restrict the theories to
objects that are cofibrant. Moreover, some useful functors between CwFΣ are only
pseudo-morphisms, preserving the structure up to isomorphism. In such cases, we
will have to replace them by strict morphisms (which is possible when the source is
cofibrant).

1.4.2 Reduction from SOGATs to GATs

Uemura presents the functorial semantics of SOGATs in the 2-category of representable
map categories. A SOGAT is a (presentation of a) representable map category T . A
model of T is a category together with a representable map functor T → DFC , where
DFC is the representable map category of discrete fibrations over C. Two equivalent
definitions of morphism of models are given by Uemura (2019):

• The first definition explicitly quantifies over all objects and morphisms in T , with
an additional condition for representable maps.

• The other definition makes use of a generalization of DFC : for any functor F :
C → D, there is a representable map category DF→F that lies over DFC and DFD. A
morphism is then a representable map functor T → DF→F that lies over models
T → DFC and T → DFD.

More generally it is possible to construct DFI for any indexing category I; rep-
resentable map functors T → DFI correspond to I-indexed diagrams of models,
lying over an I-indexed diagram of categories.

We will present the functorial semantics of SOGATs by reduction to the functorial
semantics of GATs. For any SOGAT T , we construct a GAT T fo that is an extension of
the GAT of categories with a terminal object. This has a universal property: algebras
of T fo into any Σ-CwF E with an internal category C are in bijective correspondence
with morphisms from T to pshE (C), which is the (Σ, Πrep)-CwF of internal presheaves
in E over C. In other words, T 7→ T fo is a left adjoint of psh−(−) While T classifies its
second-order models, T fo is a first-order GAT classifying first-order algebras of T .

CHAPTER 1. INTRODUCTION 13

The (Σ, Πrep)-CwF pshE (C) plays the same role as DFI in the functorial semantics.
However, having the left adjoint additionally ensures that all of the semantic notions
developed for GATs can be lifted to SOGATs. When developing the semantics of SOGATs,
we can then focus on aspects that are specific to the second-order case.

An alternative reduction from SOGATs to GATs at the level of signatures (QIIT-
signatures for GATs and their generalization to SOGATs) was given by Kaposi and Xie
(2024).

1.4.3 Internal algebras of SOGATs and relative induction principles

Because any presheaf category is a model of extensional type theory, it is possible to
replace constructions performed “externally” by constructions in the “internal” lan-
guage of a presheaf category. For the purpose of doing the metatheory of type theory
algebraically, the internal language of presheaf categories proves to be an essential tool,
for multiple reasons. One reason is that syntactic constructions are typically stable under
substitutions or under some other class of morphisms; by working in an internal lan-
guage, these stability conditions can be ignored. Another reason is that complex external
constructions can correspond to constructions performed in the internal language that
are simpler, or instances of better known constructions.

Thanks to the reduction from SOGATs to GATs, one can consider algebras of a
SOGAT that are internal to an arbitrary Σ-CwF E , not only Set. In particular, one can
consider algebras internal to presheaf categories Psh(C).

A general result says that algebras internal to a presheaf categories are in bijective
correspondence with presheaves of algebras, i.e. functors

Cop → AlgT .

This is used as an interface between internal and external constructions, as internal
algebras make sense in the internal language of presheaf categories, while presheaves of
algebras can be easier to construct and compose externally.

The idea of relative induction principles is to prove universal properties for certain
internal algebras, either among internal algebras or in functor categories Cop → AlgT .

The internal algebras SF that are involved are determined by a functor F : C → S ,
where S is the initial model of the type theory under consideration (an arbitrary SOGAT).

The internal algebra SF has the property that its closed components (closed types
and terms) correspond to open components of S over contexts of the form F(Γ). More
specifically, seeing SF : Cop → AlgT as a presheaf of algebras, there is a natural isomor-
phism

SF(Γ).Ty(1) ∼= S .Ty(F(Γ))

between closed types and open types, and similarly for other components.
Once we have a universal property for SF, one can prove properties of SF using

methods that are normally used to prove properties of closed components, in the internal
language of Psh(C). In particular, categorical sconing, which is typically used to prove
properties of closed components such as canonicity, can be used to prove properties of SF.
Thanks to the correspondence between closed components of SF and open components
of S , we can obtain properties of open components of S , such as normalization.

I discovered while writing this introduction that the core idea of replacing gluing by
internal sconing had appeared in a note by Altenkirch, Hofmann, and Streicher 1997.

CHAPTER 1. INTRODUCTION 14

1.4.4 Applications of relative induction principles

Normalization proofs

As an application of the relative induction principles over renamings, we will give
multiple proofs of normalization for dependent type theory, and of its main corollary,
decidability of equality.

• We prove normalization for Martin-Löf Type Theory, in which we include a hier-
archy of universes, closed under Π-types, Σ-types, Id-types, W-types, a type of
booleans and an empty type.

• We then investigate normalization proofs for extensions of MLTT with definitional
algebraic structures. More specifically, we consider MLTT with list types with a
definitional monoid structure, meaning that the monoid laws

nil++ x = x,
x ++ nil = x,
(x ++ y) ++ z = x ++ (y ++ z)

hold up to definitional equality. We also include two eliminators, which compute
respectively on left-nested lists and right-nested lists.

The main idea of the normalization proof is that normal forms of these lists types
should be semantic lists of neutral lists. The same idea was also proposed by Cor-
byn et al. (2022).

Lists with a definitional monoid structure were studied by Allais, McBride, and
Boutillier (2013) (in the simply typed setting, but their methods would extend
to the dependently typed setting). Our presentation is however more general:
most of the construction can be generalized to other algebraic theories: one just
replaces the semantic lists by semantic free algebras of the corresponding algebraic
structure. In particular, the presented method can deal with algebraic structures
with commutative operations (e.g. definitional commutative monoids), and with
some additional ad-hoc eliminators, such as a reversal operation on lists, with the
expected rules holding definitionally.

There are two places where the choice of algebraic theory intervenes: normaliza-
tion for eliminators and the decidability of equality for normal forms. Deciding
equalities between normal forms requires some properties of the algebraic theory,
notably that the algebraic theory itself is decidable (for any set with decidable
equality, the free algebra over that set has decidable equality).

At the moment, it is not clear whether the proposed normalization strategy can
be used for algebraic theories with non-linear equations (such as groups, which
include the non-linear equation (x − x = 0)). In presence of both non-linear
equations and eliminators, normalization needs to be interleaved with equality
checking, which cannot be handled by the normalization proof (although it seems
unproblematic when implementing a type-checking algorithm).

• We also show how to combine the definitional algebraic structures with definitional
functoriality, which was also covered by the work of Allais, McBride, and Boutillier
(2013) and further studied by Laurent, Lennon-Bertrand, and Maillard (2024),
whose work we build on.

CHAPTER 1. INTRODUCTION 15

• Previous algebraic proofs of normalization that made use of internal languages
would prove normalization in the internal language, and then deduce the external
decidability of equality. This requires a tedious comparison between internal
and external definitions of normal forms. We simplify this step by proving the
decidability of equality internally, relying on an axiomatization of the levelwise
decidable propositions.

Conservativity of two-level type theory

As another application of relative induction principles, we prove the conservativity of
two-level type theory over its inner theory.

The conservativity of two-level type theory over its inner theory was conjectured
by Annenkov, Capriotti, Kraus, and Sattler (2023) and Capriotti (2017), but only a weaker
version was proven. It was proven by Kovács (2022). We prove a slightly more general
version: instead of looking at morphism 0inner → 02ltt between initial models, we look at
the morphism Tinner → T2ltt between SOGATs. As a consequence, we obtain properties of
morphisms Cinner → Free2ltt(Cinner) for arbitrary models of the inner theory. We recover
the original conservativity when Cinner is the initial model.

The result we prove is similar to the adequacy of locally cartesian closed categories
over representable map categories, proven by Gratzer and Sterling (2020).

In general, two-level type theory can be defined with any SOGAT as the inner theory
and almost any SOGAT as the outer theory. We will consider two-level type theory with
MLTT as the outer theory, and an arbitrary SOGAT as the inner theory.

As an application of relative induction principles, the proof is quite interesting,
because we need to perform induction over both the inner theory and the two-level type
theory, with interactions between the two applications of the induction principles.

Chapter 2

Categorical preliminaries

2.1 Notations and required background

This thesis assumes that the reader is comfortable with basic concepts in category theory:
categories, functors, limits and colimits, universal properties, the Yoneda lemma, etc.

We will attempt to give the categorical definitions in such a way that functoriality
and naturality conditions are obtained for free, notably by making use of classifying
objects and generic operations.

For example, the arrow category Arr(D) = [{x → y}, D] classifies natural transfor-
mations, i.e. a natural transformation α : F ⇒ G is equivalently a functor

α : C → Arr(D)

that restricts to the functors F and G after composition with π1, π2 : Arr(D)→ D. The
advantage of such a definition is that basic operations on natural transformations can be
obtained by composing functors, e.g. pre-composition with C ′ → C, post-composition
Arr(D) → Arr(D′), or with functors [I, D] → [J, D] induced by functors J → I. For
example, the vertical composition of natural transformations is determined by the
functor

{x → z} → {x → y→ z},

which is the “generic” morphism composition.
We sometimes write (f : x → y) ∈ C instead of f : C(x, y).
Objects that are free algebras or free extensions of algebras will be written using a

generalization of the notation R[X] for polynomial rings. For example, given a category
C and objects x, y ∈ C, we write C[f : x → y] for the free extension C by a new morphism
f : x → y. Its universal property says that a functor C[f : x → y] → D is uniquely
determined by a functor F : C → D along with a morphism (f : F(x) → F(y)) ∈ D.
Similarly, C[Γ ⊢ A type] would be the free extension of a model C of type theory by a
new type A in context Γ. We use underlines to distinguish the newly adjoined elements
from the pre-existing elements.

We use ⟨−⟩ for morphisms induced by universal properties on the right (usually
products or limits), and [−] for morphisms induced by universal properties on the left
(usually coproducts or colimits). For example, a morphism [f ; g] : (A + B) → X is
induced by morphisms f : A→ X and g : B→ X. A morphism ⟨ f , g⟩ : A→ (X×Y) is
induced by morphisms f : A→ X and g : B→ Y.

16

CHAPTER 2. CATEGORICAL PRELIMINARIES 17

2.2 Displayed categories

The notion of displayed category over a base category C, due to Ahrens and Lumsdaine
(2019), is equivalent to the data of a category D together with a functor p : D → C.
The main original motivation for displayed categories is that they allow for definitions
of categorical notions, notably notions of categorical fibrations, without referring to
equalities between objects.

Another motivation for the use of displayed categories (and other displayed struc-
tures) is that they can lead to more compositional and modular definitions. Indeed,
displayed categories can be substituted over a functor between base categories, and
this substitution is strictly functorial. This substitution corresponds to pullbacks of a
functor p : D → C along a base functor C ′ → C, but in general these pullbacks are only
pseudo-functorial.

Notions of displayed algebras also exist for theories other than the theory of cate-
gories. The notion of displayed algebra corresponds exactly to the premises (motives
and methods) of an induction principle. In categories of algebras of algebraic theories,
the universal property of the initial object is equivalent to the fact that any displayed
algebra over it admits a section.

Definition 2.2.1. A displayed category D over a base category C consists of the following
data:

• For every object x ∈ C, a set D[x] of displayed objects over x.

• For every morphism f : C(x, y), a family D[f] : D[x] → D[y] → Set of displayed
morphisms over f . We may write (f ′ : x′ → y′) ∈ D[f] when f ′ : D[f](x′, y′).

• We have displayed identities and a displayed composition operation: given x′ ∈
D[x], we have (id : x′ → x′) ∈ D[idx] and given (f ′ : y′ → z′) ∈ D[f] and
(g′ : x′ → y′) ∈ D[g], we have (f ′ ◦ g′ : x′ → z′) ∈ D[f ◦ g].

• Such that displayed identity and associativity laws hold: id ◦ f ′ = f ′ = f ′ ◦ id and
(f ′ ◦ g′) ◦ h′ = f ′ ◦ (g′ ◦ h′). ⌟

Example 2.2.2. The displayed category of elements El is displayed over the category Set.

• A displayed object over a set X is an element x : X.

• A displayed morphism from x to y over f : X → Y is a witness of the equality
f (x) = y. ⌟

The terminology “category of elements” for El clashes with the standard notion of
category of elements of a functor F : C → Set. This should not cause too much confusion,
as the two notions are closely related. We will use El to define the category of elements∫

El[F] in example 2.2.9.

Example 2.2.3. The category of families Fam is displayed over the category Set.

• A displayed object over a set X is a family X′ : X → Set.

• A displayed morphism over f : X → Y is a dependent function

f ′ : (x : X)→ X′(x)→ Y′(f (x)). ⌟

Example 2.2.4. There is a category Func of functions, displayed over Set× Set.

CHAPTER 2. CATEGORICAL PRELIMINARIES 18

• A displayed object of Func over (X1, X2) is a function αX : X1 → X2.

• A displayed morphism over (f1 : X1 → Y1, f2 : X2 → Y2) is a witness of the
equality αY ◦ f1 = f2 ◦ αX.

More generally, there is an arrow category Arr(E) displayed over E × E for any base
category E . ⌟

Example 2.2.5. There is a category Sect of sections, displayed over Fam.

• A displayed object of Sect over (X, X′) is a dependent function

αX : (x : X)→ X′(x).

• A displayed morphism over (f : X → Y, f ′ : (x : X) → X′ → Y′(f (x))) is a
witness of the equalities

(x : X)→ f ′(αX(x)) = αY(f (x)). ⌟

Construction 2.2.6. Any displayed category D over a base C has a total category
∫

D
and a projection functor πD : (

∫
D)→ C.

• An object of
∫

D is a pair (xc, xd) where xc ∈ C and xd ∈ D[xc].

• A morphism of
∫

D from (xc, xd) to (yc, yd) is a pair (fc, fd) where (fc : xc → yc) ∈
C and (fd : xd → yd) ∈ D[fc].

The projection functor πD : (
∫

D)→ C projects the first components of these pairs. ⌟

In practice we will often identify a displayed category with its total category. When
a functor should be seen as the projection functor out of the total category of a displayed
category, we sometimes use the distinctive arrow π : D _ C. In diagrams, these arrows
are almost always written vertically: the total category D should be seen as lying over
the base category C.

Definition 2.2.7. A section of a displayed category D over a base category C consists of
a function sending any object x ∈ C to an object S(x) : D[x], of a function sending any
morphism (f : x → y) ∈ D to a morphism (S(f) : S(x)→ S(y)) ∈ D[f], subject to the
functoriality laws S(id) = id and S(f ◦ g) = S(f) ◦ S(g).

Sections of D are in bijective correspondence with sections of the projection functor
πD : (

∫
D) _ C: ∫

D

C

πDS

⌟

Definition 2.2.8. Given a functor F : A→ C and a displayed category D over C, there is
a restricted displayed category D[F] over A.

• A displayed object of D[F] over x ∈ A is a displayed object of D over F(x).

• A displayed morphism of D[F] over (f : x → y) ∈ A is a displayed object of D
over F(a).

CHAPTER 2. CATEGORICAL PRELIMINARIES 19

This construction is strictly functorial in F.
The total category of D[F] is a pullback of

∫
D over F:∫

D[F]
∫

D

A C

⌟
πD

F

⌟

Example 2.2.9. For any functor F : C → Set, the restriction El[F] of the displayed
category El over F is a displayed category over C called the category of elements of F.

An object of El[F] displayed over c ∈ C is an element x ∈ F(c). A unique morphism of
El[F] from x ∈ F(c) to y ∈ F(d) over (f : c→ d) ∈ C exists if and only if F(f , x) = y. ⌟

Definition 2.2.10. Given a functor F : A → C and a displayed category D over C, a
dependent functor F′ : A→ D[F] (over F) is a section of the restriction D[F] (which is
displayed over A).

This corresponds to a functor F′ : A→
∫

D such that πD ◦ F′ = F.∫
D

A C

πD

F

F′

⌟

Remark 2.2.11. We now use the notation D[−] both for the sets of displayed components
of D, and for the restriction of D over a functor. The former can be seen as a special case
of the latter, when considering functors and dependent functors out of the walking object
and walking arrow categories. Indeed, one can identify an object x ∈ C with a functor
⟨x⟩ : 1Cat → C, and a displayed object in D[x] with a dependent functor 1Cat → D[⟨x⟩].
Similarly, one can identify an arrow (f : x → y) ∈ C with a functor ⟨ f ⟩ : {x → y} → C
that sends x and y to x and y. A displayed arrow (f ′ : x′ → y′) ∈ D[f] can then be
identified with a dependent functor {x → y} → D[⟨ f ⟩] that sends x and y to x′ and
y′. ⌟

Remark 2.2.12. We sometimes use the notation F′ : (a : A) → D[F(a)] instead of
F′ : A → D[F] for dependent functors, mainly when F(a) is an expression written
without explicitly naming the functor F.

An example is the dependent functor

Id : (X : Set)→ Func[X, X]

whose action on objects sends a set to its identity function.
In that notation, a cannot be seen as just an object of A. There are two ways to

interpret that notation.

• The element a is seen as a generalized element of A (a functor X → A for an
arbitrary category X). Then the actions of F′ on objects and morphisms can be
recovered for X = 1Cat and X = {x → y}.

• Categories, functors, displayed categories and sections form a category with families,
a model of dependent type theory. Then F′ : (a : A) → D[F(a)] can be seen as a
notation for (a : A ⊢ F′ : D[F(a)]) ∈ Cat, asserting that F′ is a term in that category
with families. ⌟

CHAPTER 2. CATEGORICAL PRELIMINARIES 20

2.3 Categories of presheaves and their internal language

Fix a base category C.

Definition 2.3.1. A presheaf is a functor Cop → Set. A morphism of presheaves between
X, Y : Cop → Set is a dependent functor Cop → Func[X, Y]. The category of presheaves
is written Psh(C). ⌟

Definition 2.3.2. A presheaf family (or dependent presheaf) over X : Cop → Set is a
dependent functor Cop → Fam[X]. A section of a presheaf family Y : Cop → Fam[X] is a
dependent functor Cop → Sect[Y]. ⌟

Presheaves are used everywhere in the semantics of type theory, starting with the
fact that our preferred notion of model of type theory (categories with families) consists
of a category together with presheaves of types and terms over a category of contexts
and substitutions. The actions on morphisms of these presheaves are the substitution
operations.

When working with presheaves, the internal language of the presheaf topos is
a very convenient tool. Indeed, any presheaf category can be extended to a model
of extensional type theory, and most (constructive) mathematical arguments can be
interpreted in this model. Constructions performed in the internal language correspond
externally to the constructions of presheaves and natural transformations between them,
but all functoriality and naturality conditions don’t need to be proven explicitly. More
importantly, complex external constructions may correspond to well-known and simple
internal constructions.

This means however that we need some way to understand the correspondence
between internal constructions and external objects. Using the internal language usually
consists of multiple steps. First we axiomatize the data of interest in the internal language.
This means that we construct some closed type (⊢ I type) in the internal language, and
provide a global element of the corresponding presheaf JIK. Then we perform some
construction in the internal language, relying on our axiomatization. We obtain an
element (i : I ⊢ o(i) : O(i)) of some dependent type (i : I ⊢ O(i) type). Finally, we
obtain an external global element of the dependent presheaf JOK corresponding to the
dependent type O, lying over the provided global element of the presheaf corresponding
to I. For this to be possible, we need a way to characterize the presheaves JIK and JOK
corresponding to the types I and O, or at least their sets of global elements. We could
also try to keep track of the section JoK corresponding to the term o, but it is often more
practical to specify what is needed in the type O, e.g. we could replace O(i) by the
singleton type (o′ : O(i))× (o′ = o(i)), but (o′ = o(i)) can often be replaced by a simpler
relation.

The presheaf topos Psh(C) is a model of extensional type theory, and we have an
explicit description of this model. Whenever we want to understand internal construc-
tions, we could “just” unfold the external definitions of the components this model.
This should almost always be avoided, as it is not a robust way to use the internal
language. For example, two types that are trivially isomorphic in the presheaf model
may correspond externally to presheaves that are isomorphic, but not trivially so (con-
sider X × Y → Z and X → (Y → Z)). Depending on whether one chooses to unfold
the definitions of the first or second presheaf, one may obtain very different external
unfoldings.

Instead, we distinguish the presheaf topos Psh(C) from its internal language Lc.
While the presheaf topos is a semantic model of extensional type theory, its internal

CHAPTER 2. CATEGORICAL PRELIMINARIES 21

language is seen as a syntactic model, with an interpretation J−K : Lc → Psh(C) from
syntax to semantics. The interpretation should be an equivalence between models of
extensional type theory, for some suitable notion of equivalence. We don’t make the
definition of Lc fully precise; it could in fact be identical to Psh(C), but left abstract. It
is better perhaps to see it as a cofibrant replacement of Psh(C): a syntactic model of
extensional type theory obtained by adding all of the structure that exists in Psh(C) as
new axioms. Any term constructed in the internal language only uses finitely many of
these axioms.

Note that instead of extensional type theory, we could use intensional type theory
with the uniqueness of identity proofs axiom as our internal language. In this situation,
understanding the difference between Psh(C) and Lc becomes simpler: Psh(C) remains
the same semantic model of extensional type theory (which happens to also be a model
of intensional type theory), while Lc ought to be a syntactic model of intensional type
theory, enjoying normalization and decidability of equality.

Instead of using just extensional type theory as the internal language of Psh(C), we
will use a multimodal type theory with two modes c and 1, corresponding to Psh(C) and
Set, and a single modality □ corresponding to the global elements functor Psh(C)→ Set
(which is right adjoint to the discrete presheaf functor Set→ Psh(C).) This internal lan-
guage consists of two models L1 and Lc of extensional type theory, with interpretations
J−K : L1 → Set and J−K : Lc → Psh(C), and additional structure corresponding to the
modality. This serves two purposes:

• As mentioned before, we don’t want to compute explicitly the interpretation JAK
of a type (⊢ A type) ∈ Lc in the presheaf model Psh(C), because the construction
of the presheaf model is rather complicated.

Computing the interpretation JAK in Set of a type (⊢ A type) ∈ L1 is however fine,
at least when the type A does not involve the modality □, because of how simple
the description of Set as a model of extensional type theory is.

Including the second mode 1 provides a better interface between the internal
language and external constructions.

• While staying in mode c is sufficient for most applications of the internal language,
verifying that particular axioms are satisfied often rely on properties that cannot
be expressed without modalities, such as the fact that colimits are computed
objectwise in presheaf categories, or the fact that some representable presheaf is a
tiny object.

Having access to the modalities thus makes the axiomatization easier.

Kripke-Joyal forcing (Awodey, Gambino, and Hazratpour 2024) is another method
that could be used to mediate between the internal language and external constructions.
Yet another alternative to our approach is the framework recently proposed by Kovács
and Sattler (2025), which should provide a way to avoid substructural modalities.

2.3.1 Multimodal type theory

We present the multimodal type theory to be used as the internal language as a dual-
context modal type theory. We use notations close to the crisp type theory of Shulman
(2017). We could alternatively work with the instance of MTT (Gratzer, Kavvos, Nuyts,

and Birkedal 2021) whose 2-category of modes has a single non-identity arrow {1 □−→ c}.

CHAPTER 2. CATEGORICAL PRELIMINARIES 22

Using a dual-context theory instead has the advantage of being more self-contained for
the purposes of this thesis.

We have two notions of contexts: single contexts Γ, and dual contexts Γ | ∆, where ∆
can depend on Γ. There are two type judgements, over the two kinds of contexts.

Γ ⊢ A type1 Γ | Θ ⊢ A typec

We can extend a single context by a 1-type: (γ :: Γ).(a :: A(γ)), or a dual context by
a c-type: (γ :: Γ) | (δ : ∆).(a : A(γ, δ)). Following the notations of crisp type theory and
spatial type theory, we use (a :: A) for variables in the first half of the dual context, and
(a : A) for variables in the second half of the dual context. Writing (a :: A) presupposes
that A is a 1-type, and (a : A) presupposes that A is a c-type.

Both the 1- and the c- types are closed under all of the operations of extensional type
theory: universes, dependent products, dependent sums, extensional equality types,
quotients, etc. We write Set1n for the universes at mode 1, and Setcn for the universes at
mode c. When working in the internal language, elements of Set1 are called 1-sets, and
elements of Setc are called c-sets. Any general construction in extensional type theory
can be interpreted either at mode 1 or at mode c.

The modality □ sends a c-type to a 1-type. The c-type has to lie over a dual context
with an empty second half.

Γ | · ⊢ A typec

Γ ⊢ □A type1

Γ | · ⊢ a : A
Γ ⊢ mod□(a) :: □A

Γ ⊢ a :: □A
Γ | · ⊢ unmod□(a) : A

Γ ⊢ a :: □A
Γ ⊢ mod□(unmod□(a)) = a

Γ | · ⊢ a : A
unmod□(mod□(a)) = a

Note that the rule for unmod□ can be generalized thanks to weakening:

Γ ⊢ a :: □A
Γ | ∆ ⊢ unmod□(a) : A

However, writing mod□(a) given Γ | ∆ ⊢ a : A is only valid when a does not actually
depend on ∆.

We can check that there is, at mode 1, a term

app□ :: □(A→ B)→ (□A→ □B),

app□ ≜ λ f a 7→ mod□(unmod□(f)(unmod□(a))),

witnessing the fact that □ is an applicative functor (McBride and Paterson 2008). There
is however no term of type

(□A→ □B)→ □(A→ B).

Indeed, to construct a function A→ B, we need to bind a variable (a : A) in the second
half of the dual context, and the term (mod□(a) :: □A) is not valid, because the variable
a is not in the first half of the dual context. Semantically, (a : A) is a general element of a
presheaf A, and cannot be seen as a global element.

From now on, we will omit unmod□(−) and mod□(−), they should be inserted
exactly when moving between modes 1 and c.

Semantically, this language is interpreted as follows:

CHAPTER 2. CATEGORICAL PRELIMINARIES 23

• A single context Γ is interpreted as a set JΓK.

• A 1-type (Γ ⊢ A type1) is interpreted as a family of sets JAK : JΓK→ Set.

• The operations of extensional type theory at mode 1 are interpreted using the
structure of Set as a model of extensional type theory.

• For a dual context Γ | ∆, the component ∆ is interpreted as a family of presheaves
J∆K : JΓK→ Psh(C).

• A c-type (Γ | ∆ ⊢ A typec) is interpreted as a family of dependent presheaves
JAK : (γ : JΓK)→ PshFam(J∆K(γ)).

• The operations of extensional type theory at mode c are interpreted using the
structure of Psh(C) as a model of extensional type theory, pointwise over JΓK.

• The modality □A sends the family of presheaves JAK : JΓK→ Psh(C) to the family
of its global elements J□AK = λγ→ (Cop → El[JAK]).

2.3.2 Axiomatization in multimodal type theory

We now work in the internal language. We assume the following axiom, which internal-
izes a large part of the intended semantics.

Axiom 2.3.3. There is a small category C :: Cat, and for any universe level n, an equiv-
alence J−K :: □Setcn ∼= Pshn(C) of categories, compatible with the universe lifting
operation for n ≤ m. ⌟

This axiom is validated in the intended model, with the internal category C inter-
preted as the external base category C. Indeed, in the intended model, □Setcn is a category
whose objects are global sections of the Hofmann-Streicher universe classifying the n-
small dependent presheaves. These global sections can be identified with presheaves.
The morphisms of □Setcn are then natural transformations between the corresponding
presheaves.

Note that the statement of Axiom 2.3.3 is all in the internal language, at mode 1. Here
Setcn is the category of n-small sets at mode c: its objects are elements of the universe Setcn,
its morphisms are functions. The modality □ preserves finite limits; as a consequence it
has an action on algebras of any essentially algebraic or generalized algebraic theory,
in particular categories. Then □Setcn is a category at mode 1. Its objects are elements of
□Setcn, and morphisms from X to Y are elements of □(X → Y). The presheaf category
Pshn(C) is the category of presheaves valued in 1-sets.

The equivalence J−K then consists of:

• A correspondence □Setcn
∼= Pshn(C) between elements of □Setcn and presheaves.

• A bijective correspondence □(X → Y) ∼= (JXK ⇒ JYK) between elements of
□(X → Y) and natural transformations.

• Such that identities and compositions are preserved by these correspondences.

This equivalence can be extended from categories to categories with families. Indeed,
both sides of the equivalence have the structure of a locally cartesian closed category, and
locally cartesian closed categories that are equivalent as categories are also equivalent as
locally cartesian closed categories. Thus we also have:

CHAPTER 2. CATEGORICAL PRELIMINARIES 24

• A correspondence □(X → Setcn)
∼= PshFamn(JXK) between elements of □Setcn and

presheaf families.

• A bijective correspondence □((x : X)→ Y(x)) ∼= PshSect(JYK) between elements
of □((x : X)→ Y(x)) and sections of presheaf families.

Using these correspondences, structures can be transferred between □Setcn and
Pshn(C). Any object or type characterized by a universal property is uniquely deter-
mined up to isomorphism. For example, the Σ-types, Π-types, limits and colimits in
□Setcn and Pshn(C) have to coincide up to isomorphism.

We can use this correspondence to state the Yoneda lemma in a way that involves
the mode c.

Lemma 2.3.4. For every Γ :: C, there is a c-setよ(Γ) :: □Setc0, such that for any X :: □Setcn,
there is an isomorphism □(よ(Γ)→ X) ∼= JXK(Γ), naturally in X.

Proof. This follows from the Yoneda lemma;よ(Γ) is obtained as the element of □Setc0
corresponding to a representable presheaf in Psh0(C).

We can now use □(よ(Γ)→ X) to talk about elements of X :: □Setcn, without involv-
ing JXK. We can also redefine JXK in a way that makes use of the Yoneda embedding:

JXK′(Γ) = □(よ(Γ)→ X),

JXK′(f : ∆→ Γ) ≜ λx δ 7→ x(f (δ)).

Because J−K was abstract, we can replace it by J−K′ without loss of generality.
We say that a c-set X :: □Setcn is representable if there is Γ :: C and an isomorphism

□(よ(Γ) ∼= X). Note that this is not a local notion: there is no family is-representable :
□(Setc → Setc) classifying the representable c-sets.

Proposition 2.3.5 (Propositions can be tested objectwise). Let Y :: □((x : X)→ Propc) be
a family of propositions at mode c. The proposition

□((x : X)→ Y(x))

is true if and only if for every Γ :: C and element x :: □(よ(Γ)→ X), the proposition

□((γ :よ(Γ))→ Y(x(γ)))

is true.

Proof. The corresponding fact is true when looking at sections of propositional presheaf
families.

Corollary 2.3.6. Let f :: □((x : X) → Y(x) → Z(x)) be a family of functions. If for every
element x :: □(よ(Γ)→ X), the induced function

fΓ :: □((γ :よ(Γ))→ Y(x(γ)))→ □((γ :よ(Γ))→ Z(x(γ)))

is bijective, then for every x : X, f (x) : Y(x)→ Z(x) is bijective.

Proof. This is an instance of proposition 2.3.5 for the family

(x : X)(z : Z(x)) 7→ is-contr((y : Y(x))× f (x, y) = z).

CHAPTER 2. CATEGORICAL PRELIMINARIES 25

Proposition 2.3.7 (Colimits are computed objectwise). Let D :: □(よ(Γ) → Cat) be a
family of categories at mode c and A :: □(∀γ→ Cat(D(γ), Setc)) be a family of functors.

Then the canonical map

colim
d∈□(ΠγD(γ))

(□(∀γ→ A(γ, d(γ))))→ □(∀γ→ colim
d∈D(γ)

(A(γ, d)))

ιd(a) 7→ (λγ 7→ ιd(γ)(a(γ)))

is bijective (where ΠγD(γ) is a product in Cat, and colimit inclusion maps are written ι−).

2.3.3 Universes in presheaf categories

Hofmann-Streicher universes (Hofmann and Streicher 1997) strictly classify the (small)
dependent presheaves, meaning that the n-th universe Un is a representing object for the
functor

PshFamn : Psh(C)op → Setn+1

which sends X ∈ Psh(C) to the set of n-small dependent presheaves over X, i.e. the
dependent functors Cop → Famn[X]. The universal property of Un then says that
natural transformations X ⇒ Un are in bijective correspondence with n-small dependent
presheaves over X, naturally in X.

Given a functor P : Psh(C)op → Set, we may want to know whether it is rep-
resentable and how to construct a representing object UP. A well-known trick is
that if this functor is representable, then the representing object is the composite
(P ◦よ) : Cop → Set. Indeed, if UP is a representing object, we have natural iso-
morphisms P(よ(Γ)) ∼= (よ(Γ)⇒ UP) ∼= UP(Γ). This provides a candidate representing
object, and it can be shown that it is an actual representing object when P is continuous,
due to the fact that any presheaf is a colimit of representable presheaves.

Checking continuity is however not straightforward, so we give weaker criterion
(lemma 2.3.9) that can be checked syntactically by unfolding the definition of P. This
weaker criterion is sufficient to construct the Hofmann-Streicher universes (corollary 2.3.10),
and some other classifiers that are used in this thesis, such as the classifier of locally
representable dependent presheaves (Construction 2.3.14), and the classifier of levelwise
decidable propositions (proposition 2.3.22).

Lemma 2.3.8. Let S ∈ Cat be a small category with a terminal object 1S and T be an n-small
family over the set Cat(S, C) of S-shaped diagrams in C. Then the functor

P : Psh(C)op → Setn,

P(X) ≜ (F : Cat(S, C))(x : X(F(1S)))→ T(F),

P(α : X ⇒ Y) ≜ (λMY F x 7→ MY(F, αF(1S)(x)))

is representable, and its representing object is n-small.

Proof. Our candidate representing object is

UP(d) = (F : Cat(S, C))(f : F(1S)→ d)→ T(F),
UP(g : d→ c) = λu F f 7→ u(F, g ◦ f).

An element of P(X) is a function

(F : Cat(S, C))(x : X(F(1S)))→ T(F).

CHAPTER 2. CATEGORICAL PRELIMINARIES 26

A natural transformation X ⇒ UP is the data of functions

(x : X(d))(F : Cat(S, C))(f : F(1S)→ d)→ T(F),

naturally in d.
By naturality, these functions are uniquely determined by their evaluation at d =

F(1S) and f = id. Furthermore, evaluation at d = F(1S) and f = id is natural in X.
This provides a natural isomorphism P(X) ∼= (X ⇒ UP), witnessing the fact that UP
represents the functor P.

In concrete applications, lemma 2.3.8 is often instantiated for S a linear order [n] =
{n → (n − 1) → . . . → 1 → 0} (where 0 is the terminal object). Then a S-shaped

diagram is a sequence of n-composable arrows {cn
fn−→ cn−1 −→ . . . −→ c1

f1−→ c0}.

Lemma 2.3.9. Let D be a small category, S : D → Cat be a functor such that S(d) has a
terminal object 1S(d) for any d ∈ D and T : D → Famn[Cat(S(−), C)] be a dependent functor
over Cat(S(−), C) : D → Set. Then the functor

P : Psh(C)op → Setn,

P(X) ≜ lim
d∈D

((F : Cat(S(d), C))(x : X(F(1S(d))))→ T(d, F)).

is representable and its representing object is n-small.

Proof. This follows from lemma 2.3.8 and the fact that a limit of representable functors is
representable by the limit of the representing objects.

In applications, lemma 2.3.9 is instantiated for limits corresponding to iterated
dependent sums.

Corollary 2.3.10 (Hofmann-Streicher universes). For every small category C and universe
level n, the functor

PshFamn : Psh(C)op → Setn+1.

which sends a presheaf to the set of n-small dependent presheaves over it, is representable.

Proof. Observe that we can unfold the definition of PshFamn(X) as follows:

PshFamn(X) ∼=
(Y0 : ∀c0 (x : X(c0))→ Setn)

× (Y1 : ∀(c1
f1−→ c0)(x : X(c0))→ Y0(c0, x)→ Y0(c1, x[f1]))

× (− : ∀c0 (x : X(c0))→ Y1(id, x) = id)

× (− : ∀(c2
f2−→ c1

f1−→ c0)(x : X(c0))→ Y1(f2, x[f0]) ◦Y1(f0, x) = Y1(f1 ◦ f2, x))

The result then follows from lemma 2.3.9, for a limit that encodes the dependencies of the
above definition. The objects of the (inverse) diagram D → Cat are the four categories
[0], [1], [0], [2]. There are six generating arrows in D, corresponding to the dependencies
Y0(c0, x), Y0(c1, x[f1]), Y1(id, x), Y1(f2, x[f0]), Y1(f0, x) and Y1(f1 ◦ f2, x).

CHAPTER 2. CATEGORICAL PRELIMINARIES 27

2.3.4 Local representability

We discuss the notion of locally representable dependent presheaf, which we will use
to encode the notion of context extension in models of type theory. A dependent
presheaf Y over X is locally representable exactly when the “total” natural transformation
π1 : (ΣXY) _ X is (algebraically) representable. The notion of representable natural
transformation was used by Awodey (2018) to define natural models, a notion of model
of type theory. We prefer the terminology “locally representable” because it aligns with
other uses of the adverb “locally” in category theory: it involves looking at all slices
(C/Γ) of a category.

Definition 2.3.11. A local representability structure over a dependent presheaf Y :
Cop → Fam[X] consists, for every element x : X(Γ), of an object Γ.Y[x] ∈ C, a projection
morphism px : Γ.Y[x] → Γ and a generic element qx : Y(Γ, x[px]), such that for every
morphism f : ∆→ Γ and y : Y(∆, x[f]), there is a unique morphism ⟨ f , y⟩ : ∆→ Γ.Y[x]
such that px ◦ ⟨ f , y⟩ = f and qx[⟨ f , y⟩] = y. ⌟

We can give a second definition of local representability structure that makes use
of the internal language. That definition is still external, because of the quantifications
over Y and x are external. We will get later an internal notion of local representability by
defining a universe classifying the locally representable dependent presheaves.

Definition 2.3.12 (In the internal language). A local representability structure over
Y :: □(X → Setc) consists, for every element x :: □(よ(Γ)→ X), of an object Γ.Y[x] ∈ C

representing the c-set
(γ :よ(Γ))×Y(x(γ)). ⌟

Proposition 2.3.13. Given Y :: □(X → Setc), there is a bijective correspondence between
local representability structures on Y in the sense of definition 2.3.12, and local representability
structures on JYK :: PshFam(JXK) in the sense of definition 2.3.11.

Proof. We already have a correspondence between elements □(よ(Γ)→ A) and JAK(Γ).
Take any a :: □(よ(Γ)→ A).

We unfold definition 2.3.12 into the following components:

Γ.B[a] ∈ C,
p :: □(よ(Γ.B[a])→よ(Γ)),
q :: □((f :よ(Γ.B[a]))→ B(a(p(f)))),
⟨−,−⟩ :: □((γ :よ(Γ))× (b : B(a(γ)))
→ is-contr((f :よ(Γ.B[a]))× (p(f) = γ)× (q(f) = b))).

By the Yoneda lemma, p and q correspond to p :: C(Γ.B[a], Γ) and q :: JBK(a[p]).
Finally, since is-contr(−) is propositional, the last component can be decomposed

objectwise. It then says that for every ∆ ∈ C, γ :: □(よ(∆) → よ(Γ)) and b :: □(∀δ →
B(a(γ(δ)))), there is a unique element of

□(∀δ→ (f :よ(Γ.B[a]))× (p(f) = γ)× (q(f) = b)).

Up to applications of the Yoneda lemma, this corresponds to the universal property of
Γ.B[a] from definition 2.3.11, as needed.

CHAPTER 2. CATEGORICAL PRELIMINARIES 28

Construction 2.3.14. There is a presheaf Urep that strictly classifies local representability
dependent presheaves, meaning that there is a bijective correspondence between depen-
dent presheaves Y : Cop → Fam[X] equipped with a local representability structure and
natural transformations from X to Urep. ⌟

Proof. Write PshFamrep(X) for the set of locally representable dependent presheaves
over a base presheaf X. We can unfold the definition of PshFamrep(X) as follows:

PshFamrep(X) ∼=
(Y0 : ∀c0 (x : X(c0))→ Set)

× (Y1 : ∀(c1
f1−→ c0)(x : X(c))→ Y0(c0, x)→ Y0(c1, x[f1]))

× (− : ∀c0 (x : X(c0))→ Y1(id, x) = id)

× (− : ∀(c2
f2−→ c1

f1−→ c0)(x : X(c0))→ Y1(f2, x[f0]) ◦Y1(f0, x) = Y1(f1 ◦ f2, x))
× (−.Y[−] : ∀c0 (x : X(c0))→ ObC)

× (p : ∀c0 (x : X(c0))→ C(c0.Y[x], c0))

× (q : ∀(c1
f1−→ c0)(x : X(c0))(f1 = p(c0, x))→ Y0(c0.Y[x], x[f1])),

× (− : ∀(c1
f1−→ c0

f2←− c2)(x : X(c0))(f2 = p(c0, x))(y : Y0(c1, x[f1]))→
is-contr((g : C(c1, c0.Y[x]))× (p(c0, x) ◦ g = f1)× (Y1(g, x, q(f2, x)) = y))).

The existence of the universe Urep then follows from lemma 2.3.9. We have to use a weird
specification for q and extended substitutions, due to the fact that lemma 2.3.9 only
allows the use of x[f] when f is an arrow of the diagram.

The above constructions implies that the notion of locally representable c-set makes
sense in the internal language of Psh(C):

Corollary 2.3.15 (In the internal language). There is a family HasLocalRep : Setc → Setc

that strictly classifies local representability structures: for every Y :: □(X → Setc), there is a
bijective correspondence between local representability structures on Y and maps Yrep :: □((x :
X)→ HasLocalRep(Y(x))).

We write Setrep for the total space Setrep = (X : Setc)×HasLocalRep(X).

Proposition 2.3.16. The locally representable c-sets are closed under dependent sums.

Proof. We want to construct an element of

□((X : Setrep)(Y : X → Setrep)→ HasLocalRep((x : X)×Y(x))).

Since HasLocalRep classifies local representability structures, it suffices to show that
the family

(X : Setrep)(Y : X → Setrep) 7→ (x : X)×Y(x)

has a local representability structure.
Take an object Γ and elements x :: □(よ(Γ) → Setrep) and y :: □((γ : よ(Γ)) →

X(γ) → Setrep). We have to show that (γ : よ(Γ)) × (x : X(γ)) × Y(γ, x) is repre-
sentable.

CHAPTER 2. CATEGORICAL PRELIMINARIES 29

Since Setrep classifies local representability structures, we have local representability
structures over X and Y. The local representability structure over X provides an object
Γ.X along with an isomorphism

よ(Γ.X) ∼= (γ :よ(Γ))× (x : X(γ)).

The local representability structure on Y then provides an object Γ.X.Y and an isomor-
phism

よ(Γ.X.Y) ∼= (γ :よ(Γ))× (x : X(γ))×Y(γ, x),

showing that (γ :よ(Γ))× (x : X(γ))×Y(γ, x) is represented by Γ.X.Y, as needed.

Proposition 2.3.17. If C has binary products, then any representable presheaf is locally repre-
sentable (as a dependent presheaf over the terminal presheaf).

Proof. We use the internal language.
If C has binary products, then for every Γ, ∆ ∈ C, we have an isomorphism

よ(Γ× ∆) ∼=よ(Γ)×よ(∆).

Using the characterization of definition 2.3.12, this means thatよ(∆) is locally repre-
sentable.

Definition 2.3.18. Let A be a set. We say that a set X is A-null if the function

X → (A→ X),
x 7→ (λa 7→ x)

is an isomorphism.
We say that a category is A-null if its sets of objects and morphisms are A-null. ⌟

Proposition 2.3.19. Let A be a locally representable c-set. For any X :: Set1, the discrete c-set
∆X is A-null.

Proof. We have to construct an element of

(X : Set1)→ □((A : Urep)→ is-iso(∆X → (A→ ∆X))).

By corollary 2.3.6, it suffices to check for any object Γ ∈ C and A : □(よ(Γ)→ Urep) that
the map

□(よ(Γ)→ ∆X)→ □((γ :よ(Γ))→ A(γ)→ ∆X)

which sends x to λγ a 7→ x(γ) is bijective.
But by definition of ∆X, we have □(よ(Γ)→ ∆X) ∼= X.
Because (γ : よ(Γ)) → A(γ) ∼= よ(Γ.A), we also have □((γ : よ(Γ)) → A(γ) →

∆X ∼= X.
Thus we have a diagram

□(よ(Γ)→ ∆X)

X □((γ :よ(Γ))→ A(γ)→ ∆X).

∼=

∼=

This diagram commutes, so the right vertical map is an isomorphism, as needed.

CHAPTER 2. CATEGORICAL PRELIMINARIES 30

Proposition 2.3.20 (Locally representable sets are tiny). Let A be a locally representable
c-set. Then exponentiation (A→ −) preserves colimits indexed by A-null diagram categories.

Given any any family of functors F : A→ Cat(D,Setc), the canonical function

colim
d∈D

((a : A)→ F(a, d))→ ((a : A)→ colim
d∈D

(F(a, d)))

is bijective.

Proof. We have to inhabit the following type in the internal language:

□((A : Setrep)(D : Cat)(− : is-nullA(D))(F : A→ Cat(D,Set)),
→ is-iso(colim

d∈D
((a : A)→ F(a, d))→ ((a : A)→ colim

d∈D
(F(a, d))))).

By corollary 2.3.6, it suffices to construct the isomorphism objectwise. Take

Γ ∈ C,
A ::よ(Γ)→ Setrep,
D ::よ(Γ)→ Cat,
− :: ∀γ→ is-nullA(γ)(D(γ)),

F :: ∀γ→ A→ Cat(D(γ),Set).

We need to prove that the canonical map

□(∀γ→ colim
d∈D(γ)

((a : A(γ))→ F(γ, a, d)))

→ □(∀γ→ (a : A(γ))→ colim
d∈D(γ)

(F(γ, a, d)))

is an isomorphism.
First note that we have an object Γ.A and an isomorphism

よ(Γ.A) ∼= (γ :よ(Γ)) ∼= A(γ).

This induces an isomorphism

□(∀γ→ (a : A(γ))→ colim
d∈D(γ)

(F(γ, a, d)))

→ □(∀((γ, a) :よ(Γ.A))→ colim
d∈D(γ)

(F(γ, a, d))).

Now recall that colimits are computed objectwise in presheaves. This provides
isomorphisms

□(∀(γ :よ(Γ))→ colim
d∈D(γ)

((a : A(γ))→ F(γ, a, d)))

→ colim
d:□(ΠγD(γ))

(□(∀γ→ (a : γ)→ F(γ, a, d(γ))))

and

□(∀((γ, a) :よ(Γ.A))→ colim
d∈D(γ)

(F(γ, a, d)))

→ colim
d:□(Π(γ,a)D(γ))

(□(∀(γ, a)→ F(γ, a, d(γ, a)))).

CHAPTER 2. CATEGORICAL PRELIMINARIES 31

Because D(γ) is A(γ)-null, we have Π(γ,a)D(γ) ∼= ΠγD(γ).
By composing the four isomorphisms above, we obtain an isomorphism

□(∀γ→ colim
d∈D(γ)

((a : A(γ))→ F(γ, a, d)))

→ □(∀γ→ (a : A(γ))→ colim
d∈D(γ)

(F(γ, a, d))),

as needed.
If we track the underlying map of this isomorphism, we see that for any γ :よ(Γ),

an element ιd(f) is in correpondance with λa 7→ ιd(f (a)), as desired.

2.3.5 Levelwise decidable propositions

We now discuss levelwise decidable propositions in presheaf toposes. A presheaf X is
a levelwise decidable proposition if for every Γ, the set X(Γ) is an external decidable
proposition.

In this thesis, the levelwise decidable propositions will be used in proofs of decid-
ability of equality for type theory. Decidability of equality for the syntax of a type theory
can be proven by first proving normalization, and then proving that normal forms have
decidable equality. We will see that normal forms can concisely be defined as inductive
families, in the internal language of some presheaf topos. This definition is suitable
for the normalization proofs, but the decidability of equality then presents a challenge,
because these normal forms actually fail to have decidable equality in the presheaf
topos. However we can still prove that they have levelwise decidable equality, which
is sufficient to entail the decidability of equality for the syntax. Using the classifier for
levelwise decidable proposition and an axiomatization of its closure properties, we can
carry the proof completely internally to the presheaf topos.

The levelwise decidable propositions are also important for other applications out-
side of the scope of this thesis. For example, the realignment operations of Orton and
Pitts (2018), which is used to construct Glue-type in presheaf models of cubical type
theory, are only constructively definable over partial isomorphisms whose partiality is
controlled by a levelwise decidable proposition.

Definition 2.3.21. A dependent presheaf Y : Cop → Fam[X] is a levelwise decidable
proposition if for every Γ and x ∈ X(Γ), the set Y(Γ, x) is a decidable proposition. ⌟

Proposition 2.3.22. There is a classifier Propldec ↪→ Prop of levelwise decidable propositions.

Proof. This follows from lemma 2.3.9, observing that the set LevelwiseDec(X) of levelwise
decidable propositions over a base presheaf X can be unfolded as follows:

LevelwiseDec(X) ∼=
(Y0 : ∀c0 (x : X(c0))→ {⊤,⊥})

× (Y1 : ∀(c1
f1−→ c0) (x : X(c0))→ Y0(c0, x)→ Y0(c1, x[f1])).

As with the classifier Setrep of locally representable sets, the existence of a classifier
of levelwise decidable propositions means that we can meaningfully talk about them in
the internal language of Psh(C).

Definition 2.3.23 (In the internal language). We say that a set X : Setc has levelwise
decidable equality if for every x, y : X, (x = y) is a levelwise decidable proposition. ⌟

CHAPTER 2. CATEGORICAL PRELIMINARIES 32

Lemma 2.3.24. The levelwise decidable propositions are closed under:

• Limits and colimits of propositions indexed by discrete c-categories. This includes conjunc-
tions and disjunctions, as well as dependent sums.

• Quantification over locally representable c-sets: if A is locally representable and P : A→
Propldec, then ((a : A)→ P(a)) : Propldec.

Proof. The closure under limits and colimits indexed by discrete c-categories follows
from the fact that limits and colimits are computed levelwise in presheaf toposes. Note
that a colimit of propositions should be be computed as the propositional truncation of
the colimit of their underlying sets.

We now check the closure under quantification over locally representable sets. We
have to define a global map

(A : Setrep)(P : A→ Propldec)→ ((a : A)→ P(a)) ∈ Propldec.

It suffices to show that the global family

(A : Setrep)(P : A→ Propldec) 7→ ((a : A)→ P(a))

is levelwise decidable. Take Γ ∈ C and elements A :: よ(Γ) → Setrep and P :: よ(Γ) →
A → Propldec. We have to prove that the set of global elements of ∀γ → (a : A(γ)) →
P(γ, a) is decidable. But since A is locally representable, we have Γ.A ∈ C and an
isomorphismよ(Γ.A) ∼= (γ : よ(Γ))× A(γ). Transporting over this isomorphism, we
have P′ :: よ(Γ.A) → Propldec and we have to prove that the set of global elements
of ∀γ → P′(γ) is levelwise decidable. But this now follows from P′ being levelwise
decidable.

2.4 Factorization systems

The notion of weak factorization system is central to the theory of model categories,
which can be seen as presentations of ∞-categories using 1-categorical methods. In
this thesis, we will use some 1-categories in situations where we morally have some
(2, 1)-categories or 2-categories. One of the main reasons for this is that objects defined
by 1-categorical universal properties are easier to construct (using for example QIITs
or adjoint functor theorems) and to compute with (because they can be understood
syntactically).

The counterpart is that morphisms between general objects in these 1-categories are
sometimes ill-behaved, and we need to consider instead morphisms with a cofibrant
source (and a fibrant target, but for our applications all objects will be fibrant), where
the notions of cofibrations and fibrations are given by factorization systems.

A factorization system consists of two classes of maps, called left maps and right
maps. For out applications, a typical left map will be a free extension, such as the
inclusion from a ring to its polynomial ring, the free extension of a category with a new
object or morphism, the free extension of a model of type theory with a new type or
term, etc. A right map will be a morphism with some surjective or bijective components,
e.g. a fully-faithful functor (surjective on objects and bijective on morphisms), etc. In
particular, general definitions of free extensions of algebras for arbitrary generalized
algebraic theories will involve factorization systems.

Definition 2.4.1. Let l : A→ B and r : X → Y be two morphisms in a category B.

CHAPTER 2. CATEGORICAL PRELIMINARIES 33

• A lifting problem of l against r consists of morphisms f : A→ X and g : B→ Y
such that the square

A X

B Y

f

l r

g

h

commutes. A diagonal lift is a morphism h : B → X such that l = f ◦ h and
r = h ◦ g.

• A lifting structure consists, for every lifting problem, of a chosen diagonal lift.

• We say that the lifting property holds (left lifting of l against r, or right lifting of r
against l), and write l � r, if there merely exists a lifting structure.

• We say that the orthogonal lifting property holds, and write l ⊥ r, if for every
lifting problem, there exists a unique diagonal lift. ⌟

Definition 2.4.2. A weak factorization system in a category B consists of classes L of left
maps and R of right maps, such that

R = L�

and
L = �R,

and such that every morphism in B can be factored as a left map followed by a right
map, where

L� ≜ {r | ∀l ∈ X , l � r},
�R ≜ {r | ∀l ∈ R, l � r} ⌟

Definition 2.4.3. An orthogonal factorization system in a category B consists of classes
L of left maps and R of right maps, such that

R = R⊥

and
L = ⊥R

and such that every morphism in B can be factored as a left map followed by a right
map, where

L⊥ ≜ {r | ∀l ∈ X , l ⊥ r},
⊥R ≜ {r | ∀l ∈ R, l ⊥ r} ⌟

Proposition 2.4.4. For any map l : A→ B and r : X → Y, we have l ⊥ r if and only if both
l � r and ∇l � r, where ∇l is the codiagonal map

∇l : (B +A B)→ B.

Furthermore, ∇l � r if and only if l � ∆r, where ∆r is the diagonal map

∆r : X → (X×Y X).

CHAPTER 2. CATEGORICAL PRELIMINARIES 34

Proof. Consider a lifting problem

(B +A B) X

B Y,

⟨h1,h2⟩

∇l r

g

where h1, h2 : B→ X are such that h1 ◦ l = h2 ◦ l. Pose f = h1 ◦ l.
Then h1, h2 are solutions to the lifting problem

A X

B Y,

f

l r

g

h

and any two solutions to that lifting problem fit in the above diagram.
One can check that the above lifting problem against ∇l admits a unique solution if

and only if h1 = h2. The solution is then h1.
Thus ∇l � r is equivalent to the uniqueness of solutions to lifting problems of l

against r. Dually, l � ∆r is also equivalent to the uniqueness of solutions to lifting
problems of l against r. The result follows from these facts.

Proposition 2.4.5. An orthogonal factorization system is exactly a weak factorization system
such that for every left map l : A→ B, the codiagonal map

∇l : (B +A B)→ B

is also a left map.

Proof. We have to show a logical equivalence

(L = ⊥R∧R = L⊥) ⇐⇒ (L = �R∧R = L� ∧∇L ⊆ L),

where ∇L is the set of codiagonal maps of maps in L.
Note that for any class X of maps, we have ⊥X ⊆ �X and X⊥ ⊆ X �.
We first prove that when ∇L ⊆ L and ∆R ⊆ R, we have L⊥ = L� and ⊥R = �R.

This follows directly from the fact, proven in proposition 2.4.4, that L⊥ = L� ∩ (∇L)�

and its dual ⊥R = �R∩ �(∆R).
We then prove the forward direction. Assume that L = ⊥R and R = L⊥.
By proposition 2.4.4, L ⊆ ⊥R implies ∇L ⊆ �R, and moreover ∇L ⊆ �R if and

only if ∇L ⊆ ⊥R. Thus ∇L ⊆ L. A formally dual argument shows that ∆R ⊆ R.
We then have L⊥ = L� and ⊥R = �R, so L = �R and R = L�, as needed.
For the converse implication, note that for a weak factorization system, ∇L ⊆ L if

and only if ∆R ⊆ R, as proven in proposition 2.4.4. A formally dual argument shows
that ∆R ⊆ R.

Thus L⊥ = L� and ⊥R = �R, so L = ⊥R and R = L⊥, as needed.

Definition 2.4.6. Let I be a (small) set of maps.

• An I-fibration is a map with the right lifting property against all maps in I.

• An I-cofibration is a map with the left lifting property against all I-fibrations.

CHAPTER 2. CATEGORICAL PRELIMINARIES 35

• A split I-fibration is a map equipped with a right lifting structure against all maps
in I.

• An algebraic I-cofibration is a map equipped with a left lifting structure against
all split I-fibrations.

• A basic I-cellular map is a pushout of a map in I:

A X

B (X +A B)

i∈I
⌜

We say that (X +A B) is a basic I-cellular extension of X.

• A finite I-cellular map is a finite composition X0 → · · · → Xn of basic I-cellular
maps. We say that Xn is a finite I-cellular extension of X0. ⌟

There are multiple possible general definitions of general I-cellular maps, which are
equivalent classically but differ constructively.

• We can consider sequential compositions (or larger transfinite compositions) of
basic I-cellular maps. This can be problematic constructively, because this requires
an ordering on the generators (which could otherwise be provided by the well-
ordering principle).

• The usual definition of I-cellular map involves transfinite compositions of pushouts
of coproducts of maps in I, i.e. it considers adding multiple cells with the same
boundary at the same time.

• We can consider fat I-cellular maps, which are filtered colimits of finite I-cellular
extension, where the maps in the filtered diagram are required to be renamings of
finite I-cellular extensions: morphisms induced by maps between the generators
of the extensions.

Such fat I-cellular maps are used in the fat small object argument of Makkai,
Rosický, and Vokřínek (2014), but haven’t been studied in a constructive metathe-
ory to the best of my knowledge. The axiom of choice is used in Makkai, Rosický,
and Vokřínek 2014, Proposition 4.5 to show that every fat I-cellular map is also a se-
quential I-cellular map, but doesn’t seem to be required for the other constructions
presented in that paper.

Theorem 2.4.7 (Quillen’s small object argument). If B is a locally finitely presentable category,
then for any set I of maps, (I-cofibrations, I-fibrations) forms a weak factorization system, said to
be cofibrantly generated by I. Moreover any map can be factored as an I-cellular map followed by
an I-fibration.

Because orthogonal factorization systems are a special case of weak factorization
systems, we obtain a small object argument for orthogonal factorization systems. I have
seen this result attributed to Gabriel and Ulmer (1971).

Corollary 2.4.8 (Small object argument for orthogonal factorization systems). If B is a
locally finitely presentable category, then for any set I of maps, ((I ∪∇I)-cofibrations, (I ∪∇I)-
fibrations) forms an orthogonal factorization system, said to be generated by I.

CHAPTER 2. CATEGORICAL PRELIMINARIES 36

While the small object argument itself is valid constructively, its applications can be
limited by the fact that it produces non-split I-fibrations. One way to resolve this issue is
to use the algebraic small object argument of Garner (2007), which produces an algebraic
weak factorization system instead.

We won’t encounter such issues, because only orthogonal factorization systems are
used in this thesis.

I conjecture that the fat small object argument Makkai, Rosický, and Vokřínek 2014
could be also used to construct well-behaved factorizations.

Conjecture 2.4.9. If B is locally finitely presentable, then every map can be factored as a
fat I-cellular map followed by a split I-fibration. ⌟

Chapter 3

Categorical models of type theory

We review the notion of categories with families (CwFs), due by Dybjer (1995), and some
core type-theoretic structures (Σ-types and Π-types).

Categories with families are a notion of categorical model for type theory. Many
closely related notions of categorical models for type theory exist: clans, categories with
attributes, natural models, display map categories, contextual categories, C-systems,
B-systems, etc., sometimes with multiple names for the same definition.

CwFs are quite canonical due to their presentation as models of a generalized al-
gebraic theory. This generalized algebraic theory will be presented later. Since the
definition of generalized algebraic theory will involve some CwFs, bootstrapping the
definition of generalized algebraic theories will rely on the constructions of this section.

3.1 Categories with families

3.1.1 Categories with families

Definition 3.1.1. A category with families (CwF) is a category C equipped with:

• A terminal object 1C .

• A presheaf Ty : Cop → Set.

• A dependent presheaf Tm : Cop → Fam[X].

• A local representability structure on Tm. ⌟

Remark that the presheaf Ty, the dependent presheaf Tm and the locally repre-
sentable structure on Tm correspond to ty :: □(Setc) and tm :: □(Ty → Setrep) in
the modal internal language of Psh(C). Elements of C.Ty(Γ) then correspond to el-
ements of □(よ(Γ) → ty), and elements of C.Tm(Γ, A) correspond to elements of
□((γ :よ(Γ))→ tm(A(γ))).

We may write (Γ ⊢ A type) ∈ C to indicate that A : C.Ty(Γ), or (Γ ⊢ a : A) ∈ C when
a : C.Tm(Γ, A).

Definition 3.1.2. A (strict) morphism of CwFs from C to D consists of a functor F : C → D,
together with actions on types and terms:

F : C.Ty(Γ)→ D.Ty(F(Γ)),
F : C.Tm(Γ, A)→ D.Tm(F(Γ), F(A)),

37

CHAPTER 3. CATEGORICAL MODELS OF TYPE THEORY 38

and such that the terminal object is preserved strictly F(1C) = 1D, and the context
extensions are preserved strictly:

F(Γ.A) = F(Γ).F(A),
F(⟨γ, a⟩) = ⟨F(γ), F(a)⟩,
F(pA) = pF(A),

F(qA) = qF(A). ⌟

We omit the rest of the definition of the category CwF of CwFs. We admit without
proof that this category, as well as the categories CwFΣ and CwFΣ,Πrep that are defined
later in this chapter, are complete and cocomplete. We would normally obtain these
results from the presentation of these categories as the categories of algebras of general-
ized algebraic theories. We cannot do this at this point since we are still bootstrapping
the theory of GATs.

Note that limits in CwF are quite easy to define explicitly, as they can be computed
sortwise. Colimits can be constructed as QIITs in a metatheory with QIITs (this seems
circular because QIITs are just the initial algebras of generalized algebraic theories,
but specifying specific QIITs does not require GATs; it would be possible to have a
proof assistant with support for QIITs independently of any mechanization of GATs).
Alternatively, CwF could be shown to be equivalent to the category of algebras of a
finite-limits sketch; bootstrapping sketches could be simpler than bootstrapping GATs.

3.1.2 Contextuality

For some applications, we need to consider contextual CwFs, which are CwFs whose
objects are really “contexts”, i.e. lists of types. One of the motivations is that in the
“language of type theory”, we never actually mention contexts, but only types and terms.
The base category of a CwF is only included because it is needed to specify the types
and terms. Contextual CwFs were introduced by Cartmell (1986) under the name of
contextual categories. Voevodsky (2016) studied them under the name of C-systems.

We ideally want CwFs that are indistinguishable using statements in the “language
of type theory” to be indistinguishable. In particular, CwFs with isomorphic families of
types and terms but potentially different base categories should be considered the same.
This is captured by the following definition:

Definition 3.1.3. A CwF morphism F : C → D is said to be a contextual isomorphism if
its actions on types and terms are bijective, i.e. if the maps

F : C.Ty(Γ)→ D.Ty(F(Γ)),
F : C.Tm(Γ, A)→ D.Tm(F(Γ), F(A))

are bijective. ⌟

The contextual isomorphisms are the maps in the right class of the orthogonal
factorization system generated by {Ity, Itm}, where Ity and Itm are the generic extensions
of a CwF by a new type or term.

Ity : FreeCwF(Γ ⊢)→ FreeCwF(Γ ⊢ A type),
Itm : FreeCwF(Γ ⊢ A type)→ FreeCwF(Γ ⊢ a : A).

The maps in the left class of the factorization system are called left contextual maps.

CHAPTER 3. CATEGORICAL MODELS OF TYPE THEORY 39

Definition 3.1.4. A CwF C is said to be contextual if the map 0CwF → C is left contextual.
The contextual core of a CwF C is the contextual CwF obtained by the factorization of
0CwF → C as a left contextual map 0CwF → cxl(C) followed by a contextual isomorphism
cxl(C)→ C. ⌟

The contextual CwFs form a coreflective subcategory CwFcxl of CwF, with cxl :
CwF→ CwFcxl as the right adjoint.

This definition of contextuality using an orthogonal factorization system is due
to Sattler (2018). It automatically provides all of the structure that we have in presence
of an orthogonal factorization system. The more traditional definition of contextuality
is more explicit and involves an inductive characterization of contexts, often phrased
using a length function that assigns a unique length to every context.

The equivalence between the two definitions can be understood intuitively from the
fact that cxl(C) is initial among CwFs with a contextual isomorphism into C. This means
that it has the same types and terms as C, but its objects should be freely generated
by the CwF operations. The morphisms are then uniquely determined. The only CwF
operations creating objects are the empty context and context extensions, so the objects
of cxl(C) can be written uniquely as an iterated context extension over the empty context.

Definition 3.1.5. Let C be a CwF. The telescopes of C are an inductive-recursive family
generated by

Ty⋆ : C.Ob→ Set,
−.− : (Γ : C.Ob)→ Ty⋆(Γ)→ C.Ob,
ε : Ty⋆(Γ),
−▷− : (∆ : Ty⋆(Γ))→ Ty(Γ.∆)→ Ty⋆(Γ),

Γ.ε ≜ Γ,

Γ.(∆ ▷ A) ≜ (Γ.∆).A.

(Note that this instance of induction-recursion can be replaced by an inductive type
indexed by the length, or by induction over the length of contexts). ⌟

Proposition 3.1.6. The contextual core of a CwF C admits the following description:

• the objects of cxl(C) are closed telescopes (elements of Ty⋆(1C)).

• the other components are defined so that 1C .− : Ty⋆(1C)→ C.Ob becomes the action on
objects of a CwF morphism with bijective actions on morphisms, types and terms.

• the context extension is interpreted by the operation −▷−.

Proof. Write Ctele for the CwF defined in the statement, and 1C .− : Ctele → C for the in-
clusion morphisms. By definition, the map 1C .− : Ctele → C is a contextual isomorphism,
so it suffices to prove that Ctele is contextual, i.e. that 0→ Ctele is left contextual.

Take a lifting problem consisting of a contextual isomorphism F : D → E and a CwF
morphism G : Ctele → E . We write F−1 for the inverses of the actions of F on types and
terms.

D

Ctele E

F
H

G

CHAPTER 3. CATEGORICAL MODELS OF TYPE THEORY 40

Any factorization H : Ctele → D of G through F must satisfy the equations

H(ε) = 1D, (action on empty contexts)
H(∆.A) = H(∆).H(A), (action on extended contexts)

H(A) = F−1(G(A)), (action on types)

H(a) = F−1(G(a)), (action on terms)
H(⟨⟩) = ⟨⟩, (action on empty substitutions)
H(⟨ f , a⟩) = ⟨H(f), H(a)⟩. (action on extended substitutions)

By induction over telescopes, we define a morphism H satisfiying these equations. Thus
Ctele is contextual, as needed.

Note that because any orthogonal factorization system is in particular a weak factor-
ization system, we did not need to prove the uniqueness of H.

3.1.3 Democracy

Democracy weakens contextuality by only requiring that every object is isomorphic to
an iterated context extension.

Definition 3.1.7. A democracy structure on a CwF C the data of an essential section of
cxl(C)→ C: for every Γ ∈ C, there is K(Γ) ∈ cxl(C) and an isomorphism 1C .K(Γ) ∼= Γ. ⌟

Note that since cxl(C) → C is always fully faithful, the CwF C is democratic if and
only if cxl(C)→ C is an equivalence of categories.

Proposition 3.1.8. Any contextual CwF is democratic.

Definition 3.1.9. The structure of constant families on a CwF C consists, for every Γ ∈ C,
of a closed type K(Γ) and an isomophism Γ ∼= 1.K(Γ). ⌟

Proposition 3.1.10. If a CwF has constant families, then it is democratic. Conversely, if a CwF
with Σ-types is democratic, then it has constant families.

Proof. If a CwF has constant families, then every context is isomorphic to a telescope of
length 1.

If a CwF with Σ-types is democratic, then every context is isomorphic to a telescope
of some length n ≤ 0, which we can reduce to an isomorphic closed type using iterated
Σ-types (and 1 for the case n = 0).

3.1.4 Trivial fibrations

We can also consider the weak factorization system generated by the same set of maps
I = {Ity, Itm} in CwF. The maps in the left class are called cofibrations. The maps in
the right class are called trivial fibrations, they are the CwF morphisms with surjective
actions on types and terms.

Definition 3.1.11. A CwF morphism F : C → D is said to be a trivial fibration if its
actions on types and terms are surjective, i.e. if it satisfies the following lifting conditions:

strict type lifting For every Γ ∈ D and type (F(Γ) ⊢ A type) ∈ D, there merely exists a
type (Γ ⊢ A0 type) ∈ C such that F(A0) = A.

CHAPTER 3. CATEGORICAL MODELS OF TYPE THEORY 41

strict term lifting For every (Γ ⊢ A type) ∈ C and term (F(Γ) ⊢ a : F(A)) ∈ D, there
merely exists a term (Γ ⊢ a0 : A) ∈ C such that F(a0) = a. ⌟

Logically, the strict term lifting property is a kind of conservativity property: any
statement (type) of the source theory that is provable in the target theory is already
provable in the source theory.

Hofmann (1995) has proven that extensional type theory (ETT) is conservative over
intensional type theory (ITT) with function extensionality and uniqueness of identity
proofs. Hofmann’s conservativity theorem can be stated using trivial fibrations: the
canonical CwF morphism 0ITT → 0ETT between the initial models of ITT and ETT is a
trivial fibration.

Kapulkin and Lumsdaine (2016) have constructed a left semi-model structures on
categories of CwFs with identity types, Σ-types, and optionally Π-types with function
extensionality, with (cofibrations, trivial fibrations) as one of the underlying weak
factorization systems.

Constructively, one has to be careful to distinguish these trivial fibrations from
algebraic trivial fibrations, which are equipped with a choice of solution to every lifting
problem.

As a consequence of the small object argument, every cofibration is a retract of an
I-cellular map. An I-cellular object is a CwF that is freely generated by a collection of
types and terms. The I-cellular maps are the inclusion maps for free extensions of CwFs
obtained by adjoining new types and terms.

Proposition 3.1.12. Any cofibration in CwF is also a left contextual map. In particular, any
cofibrant CwF is contextual.

Proof. This follows from the fact that any contextual isomorphism is also a trivial fibra-
tion.

3.1.5 Renamings

We describe the CwF of renamings of any base CwF C. A renaming is a substitution that
is built by repeatedly extending the empty substitution by a variable.

There are two ways to define the category of renamings. It can be defined by
inductively characterizing the substitutions that are renamings. It can also be defined
with a universal property, as an initial renaming algebra. This second definition is a
variant of a definition originally due to Sattler (2018). Both definitions are useful; the
universal property will be used when proving relative induction principles in chapter 6.

Definition 3.1.13. A renaming algebra over a CwF C is a CwF R equipped with a CwF
morphism F : R → C such that R.Ty = F∗(C.Ty) and the action of F on types is the
identity. ⌟

Almost equivalently, we can ask that the action of F : R → C on types is bijective.
However this alternative definition is not essentially algebraic, because it involves
equations in C. The above definition is essentially algebraic, because the equality R.Ty =
F∗(C.Ty) can be substituted in the specification of the components of R.

The category of renaming algebras over C is the category of algebras of an essentially
algebraic theory. In particular, it has an initial object Ren(C), which we call the CwF of
renamings of C. The terms of Ren(C) are called variables, and we will write Var for the
family of variables.

CHAPTER 3. CATEGORICAL MODELS OF TYPE THEORY 42

Proposition 3.1.14. The CwF of renamings Ren(C) is contextual.

Proof. The CwF morphism cxl(Ren(C))→ Ren(C) has a bijective action on types. This
equips cxl(Ren(C)) with the structure of a renaming algebra over C. By the universal
property of Ren(C), there is a unique section of cxl(Ren(C))→ Ren(C) in the category
of renaming algebras, hence also a unique section in the category of CwFs. Thus Ren(C)
is a retract of cxl(Ren(C)). Since contextual CwFs are closed under retracts, Ren(C) is
contextual.

We can show that this definition of the CwF of renamings is isomorphic to the
inductive definition of renamings.

Proposition 3.1.15. The CwF of renamings admits the following explicit description:

• An object of Ren(C) is an object of cxl(C), i.e. a closed telescope.

• The morphisms and variables are inductive families generated by:

⟨⟩ : (Γ→ ε),
⟨−,−⟩ : (f : Γ→ ∆)→ Var(Γ, A[f])→ (Γ→ (∆ ▷ A)),
q : Var(Γ ▷ A, A[pA]),
−[p] : Var(Γ, X)→ Var(Γ ▷ A, X[pA]).

• Compositions of morphisms and substitutions of variables are determined by the following
equations:

q[⟨ f , x⟩] = x,
v[p][⟨ f , x⟩] = v[f],
⟨⟩ ◦ g = ⟨⟩,
⟨ f , x⟩ ◦ g = ⟨ f ◦ g, x[g]⟩.

• The identities and projections p are defined by induction on telescopes.

Proof. This defines a renaming algebra R. It then suffices to show that it is initial.
For any other renaming algebra D, we define a renaming algebra morphism R→ D.

• The action on objects is defined by induction on telescopes.

• The action on morphisms and variables are defined by induction on the above
inductive families.

Proposition 3.1.16. If C is contextual, then the action on objects of the morphism Ren(C)→ C
is bijective.

Proof. This follows from the characterization of the objects of Ren(C) from proposi-
tion 3.1.15.

Proposition 3.1.17. For any (Γ ⊢ A type) ∈ Ren(C), the set Var(Γ, A) has decidable equality.

Proof. This follows from the characterization of variables in proposition 3.1.15.

Lemma 3.1.18. Let (Γ ⊢ x, y : A) ∈ Ren(C) be two variables. Then we can construct an object
Γ.(x = y) representing the presheaf (γ :よ(Γ))× (x(γ) = y(γ)).

CHAPTER 3. CATEGORICAL MODELS OF TYPE THEORY 43

Proof. By proposition 3.1.17, we can decide the equality of x and y. If x = y, then Γ is
already a representing object.

Otherwise, x and y are different variables from the context Γ. Without loss of gen-
erality, assume that x occurs before y in Γ. We can write Γ = (γ1 : Γ1).(x : A(γ1)).(γ2 :
Γ2(γ1, x)).(y : A(γ1)).Γ3(γ1, x, γ2, y). Then Γ.(x = y) ≜ (γ1 : Γ1).(x : A(γ1)).(γ2 :
Γ2(γ1, x)).Γ3(γ1, x, γ2, x) represents the presheaf (γ :よ(Γ))× (x(γ) = y(γ)).

Proposition 3.1.19. The underlying category of Ren(C) has all finite limits.

Proof. We check that Ren(C) has a terminal object, binary products and equalizers.

Terminal object By its definition as a renaming algebra, Ren(C) has a terminal object.

Binary products This follows from the contextuality of Ren(C).

Equalizers The equalizer of f , g : Γ → ∆ can be constructed by induction on the
structure of ∆, using lemma 3.1.18 in the recursive case.

3.2 Type structures

We recall the type structures most commonly found on CwFs: Σ-types, equality types and
Π-types. These will be needed to define the functorial semantics of GATs and SOGATs.
We will define other type structures (universes, natural number types, W-types, etc.)
through SOGATs.

Even without SOGATs, it is already convenient to define these structures using the
internal language of Psh(C): this means that we define type structures for a family
(ty : Setc, tm : ty→ Setrep), and use the correspondence between Psh(C) and its internal
language to obtain the corresponding external type structure.

3.2.1 Dependent sums

Definition 3.2.1. A family (ty, tm) has dependent sums, or dependent binary product
types, or Σ-types, if it is equipped with operations

Σ : (A : ty)(B : tm(A)→ ty)→ ty,
pair : (a : tm(A))× tm(B(a)) ∼= tm(Σ(A, B)).

A family has a 1-type, or a nullary product type, if it is equipped with operations

1 : ty,
tt : {⋆} ∼= tm(1). ⌟

Definition 3.2.2. A CwF has Σ-types if for every Γ ∈ C, we have operations

Σ : (A : Ty(Γ))(B : Ty(Γ.A))→ Ty(Γ),
pair : (a : Tm(Γ, A))× Tm(Γ, B[a]) ∼= Tm(Γ, Σ(A, B)),
1 : Ty(Γ),
tt : {⋆} ∼= Tm(Γ, 1),

CHAPTER 3. CATEGORICAL MODELS OF TYPE THEORY 44

that are natural in Γ: for every (f : ∆→ Γ) ∈ C, we have

Σ(A, B)[f] = Σ(A[f], B[f+]),
pair(a, b)[f] = pair(a[f], b[f]),
1[f] = 1,
tt[f] = tt. ⌟

When assuming that a CwF has Σ-types, we always implicitly assume that it is also
equipped with a 1-type.

3.2.2 Equality types

Definition 3.2.3. A family (ty, tm) has extensional identity types, or equality types if it
is equipped with operations

Eq : (A : ty)(x, y : tm(A))→ ty,
refl : tm(Eq(A, x, x)),
reflect : (p : tm(Eq(A, x, y)))→ (x = y). ⌟

Definition 3.2.4. A CwF C has extensional identity types, or equality types, if for every
object Γ ∈ C, we have operations

Eq : (A : Ty(Γ))(x, y : Tm(Γ, A))→ Ty(Γ),
refl : (A : Ty(Γ))(x : Tm(Γ, A))→ Tm(Γ,Eq(A, x, x)),
reflect : (p : Tm(Γ,Eq(A, x, y)))→ (x = y),

that are natural in Γ, meaning that given any morphism (f : ∆→ Γ) ∈ C, we have

Eq(A, x, y)[f] = Eq(A[f], x[f], y[f]),
refl(A, x)[f] = refl(A[f], x[f]). ⌟

3.2.3 Dependent products

Definition 3.2.5. A family (ty, tm) has dependent products, or dependent function
types, or Π-types, if it is equipped with operations

Π : (A : ty)(B : tm(A)→ ty)→ ty,
lam : ((a : tm(A))→ tm(B(a)) ∼= tm(Π(A, B)) : app. ⌟

Definition 3.2.6. A family (ty, tm) has dependent products with arities in a family
(ty′, tm′) if it is equipped with operations

Π′ : (A : ty′)(B : tm′(A)→ ty)→ ty,
lam : ((a : tm′(A))→ tm(B(a)) ∼= tm(Π′(A, B)) : app. ⌟

3.2.4 Correspondences with classes of categories

CwFs with some selection of type formers among Σ-types, Π-types and equality types
correspond to important classes of categories: type theories with specific type formers
are the internal language of some classes of categories.

CHAPTER 3. CATEGORICAL MODELS OF TYPE THEORY 45

There are multiple ways to state these correspondences. At the very least, we want
a way to interpret type theory into the categorical structures; i.e. we want to construct
models of type theory from these categories. Constructing these models requires solving
coherence problems (Curien 1993; Hofmann 1994; Lumsdaine and Warren 2015). Going
further, one may ask for some kind of equivalence between models of type theory
and the categories. Clairambault and Dybjer (2014) construct a biequivalence between
bicategory of CwFs with Σ, Π and Eq and the bicategory of locally cartesian closed
categories.

• CwFs with Σ-types and equality types correspond to categories with all finite
limits (finitely complete categories). Indeed, all finite products can be written
using non-dependent Σ-types, and an equalizer can be written using both Σ- and
equality types:

(a : A)× (f (a) = g(a)).

• CwFs with Σ-types, equality types and Π-types correspond to locally cartesian
closed categories.

• CwFs with just Σ-types correspond to clans: categories with a class of maps that is
closed under finite compositions (the nullary case corresponds to 1-types and the
binary case corresponds to Σ-types), and under pullbacks against arbitrary maps
(this corresponds to substitution).

• CwFs without any additional structure correspond to categories with a class of
maps closed under pullbacks against arbitrary maps.

3.3 CwFs with first-order dependent products

3.3.1 Definition

We now introduce (Σ, Πrep)-CwFs, or CwFs with first-order dependent products, or
categories with families and representable families.

They ought to correspond to categories with representable maps, analogously to the
correspondences of section 3.2.4.

In Σ-CwFs, the types are zeroth-order types: there are no function types. In (Σ, Π)-
CwFs, we have all higher-order types. The purpose of (Σ, Πrep)-CwFs, is to have categor-
ical semantics for a type theory with first-order types (hence second-order quantification
when working over arbitrary contexts, which can include first-order types). For this
purpose, we stratify the types into zeroth-order types (called representable types) and
the first-order types (just called types).

Definition 3.3.1. A (Σ, Πrep)-CwF is a CwF C together with:

• A second presheaf Tyrep with a natural transformation Tyrep → Ty (left implicit).
The elements of Tyrep are called representable types.

• Both (C,Ty) and (C,Tyrep) have Σ- and 1- types (which are not necessarily pre-
served by the map Tyrep → Ty).

• (C,Ty) has Π-types with arities in Tyrep. ⌟

CHAPTER 3. CATEGORICAL MODELS OF TYPE THEORY 46

The category of (Σ, Πrep)-CwFs is denoted by CwFΣ,Πrep .
There is a fully faithful functor

CwFΣ → CwFΣ,Πrep

that equips a Σ-CwF with an empty presheaf of representable types. There is also a fully
faithful functor

CwFΣ,Π → CwFΣ,Πrep

that sends a (Σ, Π)-CwF to a (Σ, Πrep)-CwF whose types are all representable (the
natural transformation Tyrep → Ty is the identity).

Both of these functors admit left adjoints. As a consequence of these two functors
being fully faithful, instead of studying Σ-, (Σ, Πrep)- and (Σ, Π)- CwFs separately, we
can just study (Σ, Πrep)-CwFs and transfer some definitions and results to Σ- and (Σ, Π)-
CwFs.

3.3.2 Pseudo-morphisms

The category CwFΣ,Πrep is a 1-category, but categories with representable maps are
usually seen as objects of a 2-category. Perhaps more familiar, finitely complete categories
are the objects of a 2-category Lex.

We will need a way to describe the 2-categorical structure at the level of CwFΣ,Πrep .
We will do so using 1-categorical tools: equipping (Σ, Πrep)-CwFs with arrow objects
Arr(−) (extending categories of arrows), so that 2-cells can be represented by strict
morphisms C → Arr(D).

For now, we define a (2, 1)-category of (Σ, Πrep)-CwFs, pseudo-morphisms and
invertible 2-cells.

Definition 3.3.2. Let C, D be (Σ, Πrep)-CwFs. A pseudo-morphism F : C →ps D consists
of a functor F : C → D with actions on representable types, types and terms such that:

• The actions on representable types and types commute with the natural transfor-
mations C.Tyrep → C.Ty and D.Tyrep → D.Ty.

• The terminal object is preserved up to isomorphism: for any ∆ ∈ C, the canonical
map

D(∆, F(1C))→ D(∆, 1D)

is an isomorphism.

• The context extensions are preserved up to isomorphism: for any ∆ ∈ C, the
canonical map

⟨F(pA), F(qA)⟩ : D(∆, F(Γ.A))→ D(∆, F(Γ).F(A))

is an isomorphism.

• The 1-type (and the representable 1-type) is preserved up to isomorphism: for any
∆ ∈ C, the canonical map

tt : D.Tm(∆, F(1))→ D.Tm(∆, 1)

is an isomorphism.

CHAPTER 3. CATEGORICAL MODELS OF TYPE THEORY 47

• The Σ-types (and the representable Σ-types) are preserved up to isomorphism:
over any γ : D(∆, F(Γ)), the canonical map

⟨F(fst), F(snd)⟩ : D.Tm(∆, F(Σ(X, Y))[γ])→ D.Tm(∆, Σ(F(X)[γ], F(Y)[γ+])).

is an isomorphism.

• The Π-types are preserved up to isomorphism: over any γ : D(∆, F(Γ)), the
canonical map

F(app) : D.Tm(∆, F(Π(X, Y))[γ])→ D.Tm(∆, Π(F(X)[γ], F(Y)[γ+])).

is an isomorphism. ⌟

We obtain notions of pseudo-morphisms of Σ- and (Σ, Π)- CwFs as special cases of
the above definition.

Proposition 3.3.3. The preservation of the 1- and Σ- types is redundant in the definition of
pseudo-morphism.

Proof. The preservation of Σ-types can be reduced to the preservation of context exten-
sion, thanks to the isomorphisms Γ.Σ(A, B) ∼= (Γ.A).B. The case of the 1-type follows
from the isomorphisms Γ.1 ∼= Γ.

Proposition 3.3.4. Let C be a (Σ, Πrep)-CwF. Then the Yoneda embeddingよ : C → Ĉ has the
structure of a pseudo-morphism of (Σ, Πrep)-CwFs. Furthermore, its action on terms is bijective.

Proof. We use the modal internal language of Psh(C), and identify the (Σ, Π)-structure
of Ĉ with the (Σ, Π)-CwF structure of □Setc.

We first define the action ofよ on types. Let (Γ ⊢ A type) ∈ C be a type. We can
see it as an element A :: □(よ(Γ) → C.Ty). We pose よ(A) ≜ λγ 7→ C.Tm(A(γ)).
Functoriality follows from the associativity of composition. The action on representable
types is the same as the action on types. The action on terms is then the identity. In
particular, it is bijective.

The preservation of the empty and extended contexts follows from the fact thatよ
preserves limits that exist in the base category; in this case we use the preservation of
the terminal object and of pullbacks.

By proposition 3.3.3, we do not need to check the preservation for 1- and Σ- types.
In the case of Π-types, we have a natural transformation γ :: □(X ⇒ よ(Γ)), ele-

ments A :: □(よ(Γ) → C.Tyrep) and B :: □(よ(Γ) → C.Ty), and we need to prove that
the canonical map from

□((x : X)→ C.Tm(Π(A(γ(x)), λa 7→ B(γ(x)))))

to
□((x : X)→ ((a : C.Tm(A(γ(x))))→ C.Tm(B(γ(x), a))))

is bijective, which follows directly from the universal property of Π-types.

Definition 3.3.5. Let C be a CwF and (γ : Γ ⊢ A(γ) type) ∈ C, (γ : Γ ⊢ B(γ) type) ∈ C
be two types. A type isomorphism α : A ∼= B consists of terms (γ : Γ, a : A(γ) ⊢
f (γ, a) : B(γ)) ∈ C and (γ : Γ, b : B(γ) ⊢ g(γ, b) : A(γ)) ∈ C such that (γ : Γ, a : A(γ) ⊢
g(γ, f (γ, a)) = a) ∈ C and (γ : Γ, b : B(γ) ⊢ f (γ, g(γ, b)) = b) ∈ C. ⌟

CHAPTER 3. CATEGORICAL MODELS OF TYPE THEORY 48

Definition 3.3.6. Let F, G : C →ps D be two parallel pseudo-morphisms of (Σ, Πrep)-
CwFs. An invertible 2-cell α : F ∼= G consists of a natural isomorphism α : F ∼= G along
with:

• For every type (Γ ⊢ A type) ∈ C, a type isomorphism βA : F(A) ∼= G(A)[αΓ], such
that for any f : ∆→ Γ, we have βA[f] = βA[F(f)], where

βA[f] : F(A[f]) ∼= G(A[f])[α∆],

which simplifies to βA[f] : F(A)[F(f)] ∼= G(A)[αΓ][F(f)].

• For every term (Γ ⊢ a : A) ∈ C, an equality βA(F(a)) = G(a)[αΓ]. ⌟

Lemma 3.3.7. There is a unique invertible 2-cell extending any natural isomorphism α : F ∼= G
between the underlying functors of pseudo-morphisms.

Proof. We first prove uniqueness.
The type isomorphisms need to satisfy the following equality

(γa : F(Γ.A) ⊢ βA[pA](γa, F(qA)(γa)) = G(qA)[αΓ.A](γa)).

By naturality, this simplifies to

(γa : F(Γ.A) ⊢ βA[F(pA)](γa, F(qA)(γa)) = G(qA)[αΓ.A](γa)),

i.e.
(γa : F(Γ.A) ⊢ βA(F(pA)(γa), F(qA)(γa)) = G(qA)[αΓ.A](γa)).

Because F preserves context extensions, this uniquely characterizes βA.
For existence, the above provides a candidate definition of the type isomorphisms

βA, which can be shown to satisfy the desired equalities.

Construction 3.3.8. Let F : C →ps D be a pseudo-morphism of (Σ, Πrep)-CwFs. We
define a (Σ, Πrep)-CwF Glue∼=(F), called the iso-gluing of F.

• An object of Glue∼=(F) is a triple (Γ1, Γ2, α) where Γ1 ∈ C, Γ2 ∈ D and α : F(Γ1) ∼=
Γ2.

• A morphism from (∆1, ∆2, β) to (Γ1, Γ2, α) consists of morphisms f1 ∈ C(∆1, Γ1)
and f2 ∈ D(∆2, Γ2) such that the following square commutes:

F(∆1) ∆2

F(Γ1) Γ2.

β

F(f1) f2

α

• A type over (Γ1, Γ2, α) is a triple (A1, A2, β) consisting of types (Γ1 ⊢ A1 type) ∈ C,
(Γ2 ⊢ A2 type) ∈ D and of a type isomorphism β : F(A1) ∼= A2[α].

• The representable types are defined in the same way as types.

• A term of type (A1, A2, β) is a term of type A1 in C. Note that there is then a unique
term a2 of type A2 such that β(F(a1)) = a2[α].

CHAPTER 3. CATEGORICAL MODELS OF TYPE THEORY 49

• The extension of a context (Γ1, Γ2, α) by a type (A1, A2, β) is a context (Γ1.A1, Γ2.A2, α.β)
where (α.β)(γ, a) ≜ ⟨α(γ), β(γ, a)⟩.

• The 1-, Σ- and Π- types are defined using the fact that they preserve type isomor-
phisms. We omit the details. ⌟

Proposition 3.3.9. The projection map π1 : Glue∼=(F)→ C is a strict (Σ, Πrep)-CwF morphism
and satisfies the right lifting property with respect to {Ity, Ityrep , Itm, Etm}.

Proof. By definition of Glue∼=(F), the action of π1 on terms is bijective, which implies
that it satisfies the right lifting property with respect to {Itm, Etm}.

For the right lifting property with respect to Ity, take an object (Γ1, Γ2, α) ∈ Glue∼=(F)
and a type (Γ1 ⊢ A1 type) ∈ C. We need to find A2 and β so as to form a type (A1, A2, β)
of Glue∼=(F). We can simply pose A2 ≜ F(A1)[α

−1] and let β be the identity isomorphism.
The case of Ityrep is analogous.

Proposition 3.3.10. Let F : C →ps D be a pseudo-morphism of (Σ, Πrep)-CwFs. If C is
cofibrant with respect to {Ity, Ityrep , Itm, Etm}, then there merely exists a strict (Σ, Πrep)-CwF
morphism F′ : C → D along with an isomorphism α : F ∼= F′.

Proof. By proposition 3.3.9, there exists a section of π1 : Glue∼=(F)→ C. This section can
be decomposed into F′ : C → D and α : F ∼= F′.

For applications, the mere existence of a strict morphism is often not enough.
We also prove some results involving the second projection map.

Proposition 3.3.11. The projection map π2 : Glue∼=(F)→ D is a strict morphism of (Σ, Πrep)-
CwFs.

Proof. Straightforward.

Proposition 3.3.12. If F : C → D is essentially surjective on objects, types and representable
types, and bijective on terms, then the projection map π2 : Glue∼=(F) → D satisfies the left
lifting property with respect to {Ity, Ityrep , Itm, Etm}.

Proof. The left lifting property with respect to Ity corresponds to F being essentially
surjective on types. The left lifting property with respect to Ityrep corresponds to F being
essentially surjective on representable types. The left lifting property with respect to Itm

and Etm corresponds to F being bijective on terms.
In each case we also need to use the fact that F is essentially surjective on objects.

In other words, when F is an equivalence in the 2-category of (Σ, Πrep)-CwFs, pseudo-
morphisms and natural transformations, then the iso-gluing provides a presentation of
F as a span of trivial fibrations. This generalizes an analogous result for equivalences of
categories.

3.3.3 CwFs with base types

We introduce a notion of CwFs with a chosen non-functorial family of base types (and
base representable types). We want to work with CwFs that are presented by a collection
of generating types, generating terms and equations between terms. Because they don’t
include any equations between types, their types should be freely generated by the
generating types and the type formers. This is similar to the objects of a contextual CwF,
which are freely generated by the empty context and context extensions. However a
choice of base types has to be included as additional structure.

CHAPTER 3. CATEGORICAL MODELS OF TYPE THEORY 50

Definition 3.3.13. A (Σ, Πrep)-CwF with base types is a (Σ, Πrep)-CwF C along with the
data of families C.BTy : C.Ob → Set and C.BTyrep : C.Ob → Set (note the absence of
a functorial action: base types are not stable under substitution) together with maps
C.BTy(Γ)→ C.Ty(Γ) and C.BTyrep(Γ)→ C.Tyrep(Γ). ⌟

Elements of C.BTy(−) are called base non-representable types, and elements of
C.BTyrep(−) are called base representable types. Elements of the disjoint union of C.BTy
and C.BTyrep are called base types.

There are maps

Ibty : Free(Γ ⊢)→ Free(Γ ⊢ A typebase),

Ibtyrep : Free(Γ ⊢)→ Free(Γ ⊢ A typebase,rep)

that are the generic extension of a (Σ, Πrep)-CwF with base types by a new base type or
a new base representable type.

We write CwFbase
Σ,Πrep

for the 1-category of (Σ, Πrep)-CwFs with base types. The forget-
ful functor CwFbase

Σ,Πrep
→ CwFΣ,Πrep has both a left adjoint and a right adjoint. The image

of the left adjoint consists of the (Σ, Πrep)-CwF without any base types, while the image
of the right adjoint consists of the (Σ, Πrep)-CwFs in which all types are base types (i.e.
such that the maps C.BTy(Γ)→ C.Ty(Γ) and C.BTyrep(Γ)→ C.Tyrep(Γ) are bijective).

Definition 3.3.14. Let C be a (Σ, Πrep)-CwF with base types.

• A basic non-representable type is a type of the form (Γ ⊢ A[σ] type) ∈ C for a
base non-representable type (∂A ⊢ A typebase) ∈ C and (Γ ⊢ σ : ∂A) ∈ C.

• A basic representable type is a type of the form (Γ ⊢ A[σ] type) ∈ C for a base
representable type (∂A ⊢ A typebase,rep) ∈ C and (Γ ⊢ σ : ∂A) ∈ C.

• The canonical representable types are inductively generated by the basic repre-
sentable types and the type formers 1 and Σ.

• The canonical types are inductively generated by the basic non-representable
types, the canonical representable types and the type formers 1, Σ and Πrep. ⌟

Definition 3.3.15. A (Σ, Πrep)-CwF C with base types is said to be type-presented if it is
a left object for the orthogonal factorization system generated by {Ibty, Ibtyrep , Itm}. ⌟

Proposition 3.3.16. The type-presented replacement typres(C) of a (Σ, Πrep)-CwF with base
types C admits the following explicit description:

• an object of typres(C) is a closed telescope of canonical types.

• the morphism typres(C)→ C has bijective actions on substitution, terms and base types.

• a representable type of typres(C) is a canonical representable type.

• a type of typres(C) is a canonical type.

• the type operations are the constructors of the inductive family defining the canonical
representable types and canonical types.

• the rest of the structure is inherited from C.

CHAPTER 3. CATEGORICAL MODELS OF TYPE THEORY 51

Proof. Write Ctp for candidate type-presented replacement from the statement. By defini-
tion, the map Ctp → C is a right type-presented map. Thus it suffices to prove that Ctp is
type-presented.

Let F : D → E be a right type-presented map and G : Ctp → E be any morphism
of (Σ, Πrep)-CwFs with base types. We write F−1 for the inverses of the actions of F on
base types and on terms. Any factorization H : Ctp → D of G through F must satisfy the
equations:

H(ε) = 1D,
H(∆.A) = H(∆).H(A),
H(⟨⟩) = ⟨⟩,
H(⟨ f , a⟩) = ⟨H(f), H(a)⟩,
H(A) = F−1(G(A)), (for a base type A)

H(a) = F−1(G(a)),
H(A[σ]) = H(A)[H(σ)], (for a basic type A[σ])
H(Π(A, B)) = Π(H(A), H(B)),
H(Σ(A, B)) = Σ(H(A), H(B)),
H(1) = 1,
H(1rep) = 1rep,
H(Σrep(A, B)) = Σrep(H(A), H(B)),

By induction over telescopes, canonical representable types and canonical types, we
can construct H : Ctp → D satisfying these equations. Thus Ctp is type-presented, as
needed.

Using type-presented (Σ, Πrep)-CwFs, we can prove a strengthening of proposi-
tion 3.3.10.

Proposition 3.3.17. Let C be a type-presented (Σ, Πrep)-CwF and F : C →ps D be a pseudo-
morphism of (Σ, Πrep)-CwFs. Then there exists a unique strict morphism F′ : C → D along
with an isomorphism α : F ∼= F′ such that for every base type (∂A ⊢ A type) ∈ C, F′(A) =
F(A)[α∂A] and α(A) = id.

Proof. We equip Glue∼=(F) (which was constructed in Construction 3.3.8) with a choice of
base types: a base type over (Γ1, Γ2, α) is a type A1 : C.Ty(Γ1). The corresponding type
over (Γ1, Γ2, α) is the triple (A1, F(A1)[α

−1], id).
Now the projection π : Glue∼=(F) → C has bijective actions on base types and on

terms. Since C is type-presented, it admits a unique section, which can be decomposed
into F′ : C → D along with an isomorphism α : F ∼= F′. The preservation of base types
says that for every base type (∂A ⊢ A type) ∈ C, F′(A) = F(A)[α∂A] and α(A) = id.

Proposition 3.3.17 is more convenient than proposition 3.3.10, thanks to the unicity
of the strict replacement.

Chapter 4

First-order generalized algebraic
theories

In this chapter, we study generalized algebraic theories, abbreviated as GATs, and their
functorial semantics in Σ-CwFs. GATs, which were introduced by Cartmell (1986),
generalize (multisorted) algebraic theories by allowing for dependent sorts. Examples
of dependent sorts are morphisms in a category, which depend over pairs of objects, or
terms in a CwF, which depend on a context and a type.

Generalized algebraic theories have the same expressive power as essentially algebraic
theories (EATs), which are an alternative generalization of algebraic theory allowing for
partial operations. In an EAT of categories, the composition of morphisms is seen as a
partial operation on pairs of arbitrary morphisms, only defined when the target of the
first morphism matches with the source of the second morphism. GATs and EATs having
the same “expressive power” means here that a category is the category of algebras
of a GAT if and only if it is the category of algebras of an EAT. Gabriel-Ulmer duality
says that we can recognize these categories of algebras as the locally finitely presentable
categories.

However GATs and EATs are not interchangeable: a GAT equips its category of
algebras with additional structure: a (cofibrations, trivial fibrations) weak factorization
system induced by the sort dependency. This is important when considering homotopi-
cal structures. See for example the work of Frey (2023), on the extension of Gabriel-Ulmer
duality to GATs, and the work of Henry (2020) on the languages of model categories.

There are at least two approaches to the semantics of algebraic theories and their
generalizations:

Functorial semantics A theory is an object T in a 2-category E (a doctrine). The differ-
ent semantic notions are obtained by evaluating E(T ,−) at various objects of E.
Typically, E is a 2-category of structured categories, structure preserving functors
and natural transformations, such as cartesian categories (in the case of multisorted
algebraic theories), finitely complete categories (in the case of essentially algebraic
theories), or, for our purposes, structured CwFs. When the category Set is an
object of E, the category of algebras is defined as E(T , Set), which is the category
of structure preserving functors from T to Set. For any other object X ∈ E, the
category E(T , X) can be seen as the category of internal T -algebras in X .

Semantics based on signatures The semantic notions (algebras, morphisms, etc.) are
derived from a syntactic notion of signature.

52

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 53

In the case of multisorted algebraic theories, a signature can simply be given by
sets of sorts, operations and equations. Each operation has an arity, where an
arity consists of a finite list of sorts for the inputs and a sort for the output of the
operation. Each equation requires the data of two terms built from the operations
and a finite number of variables. For example, the algebraic theory of monoids has
a single sort O, an operation e of arity ()→ O (the neutral element), an operation
m of arity (O, O)→ O (the multiplication operation), and equations m(x, e) = x,
m(e, x) = x and m(m(x, y), z) = m(x, m(y, z)).

For generalized algebraic theories, formal definitions of signatures are somewhat
more complex, as it is no longer possible to stratify sorts, operations and equations:
the specification of a dependent sort may only be well-formed if some operations
or equations are already present.

Generalized algebraic theories are inherently dependently typed, and any notion
of signature has to involve dependent types. Cartmell originally defined GATs
as collections of symbols equipped with typing rules satisfying well-formedness
conditions.

Kaposi, Kovács, and Altenkirch (2019) propose a more modern approach to
the specification of GATs. They define QIIT-signatures (signatures for quotient
inductive-inductive types), which are presentation of GATs, as the contexts of a
type theory, called the theory of signatures (ToS). The different semantic notions
are then defined by induction over these signatures, namely by constructing some
models of the theory of signatures. More details on this approach can be found in
the PhD thesis of Kovács (2023).

Both approaches have advantages:

• Functorial semantics in a 2-category E are generally very compositional, as one
can make use of the 2-categorical structure of E. For instance, one gets essentially
for free that given a morphism F : T1 → T2 between theories, there is a functor
F∗ : AlgT1

→ AlgT2
between their categories of algebras, defined simply as the

precomposition functor (− ◦ F) : E(T1, Set) → E(T2, Set). Functorial semantics
also provides a presentation-independent notion of theory: different presentations
of a theory may correspond to isomorphic or equivalent objects in the 2-category.

• For an explicitly given signature, it is possible to directly compute the definitions
of algebras, morphisms, etc. In the case of QIIT-signatures, these computations
involve induction on the syntactic signatures. The resulting definitions are very
close to how one would write the unfolded definition of the category of algebras
of a concrete theory, so that the computed category of algebras has a chance to
be isomorphic, rather than just equivalent, to the explicitly defined category of
algebras. This is important for computations, as one can then easily transport
structures between the computed and explicit categories of algebras.

A general heuristic is that working with functorial semantics is more convenient
when working with abstract theories, while signatures are more convenient when
working with concrete theories (that are presented by a specific signature).

The approach adopted in this thesis is to use functorial semantics, but also develop
some tools that allow for explicit computation of the semantic notions. Generalized
algebraic theories will be given functorial semantics in Σ-CwFs. However, instead of
working in the 2-category of Σ-CwFs and pseudo-morphisms, we will work in the

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 54

1-category of Σ-CwFs and strict Σ-CwF morphisms. This allows for the use of colimits
with 1-categorical universal properties, which are determined up to isomorphism rather
than up to equivalence, and are thus better suited for some computations.

We implicitly rely on the fact (that we don’t prove or assume; it is only used for
intuition) that the 1-category of Σ-CwF and strict morphisms has a model structure
that presents the 2-category of Σ-CwFs and pseudo-morphisms. In other words, the
2-categorical structure can already be described at the 1-categorical level. For example,
instead of working with 2-cells α : F ⇒ G between morphisms F, G : T → C, we will
consider dependent morphisms α : T → ArrC [F, G] into an arrow-object.

A GAT will be identified with its classifying Σ-CwF T :

• The types of T correspond to the (derived) sorts of the theory. For example, in the
theory TCat of categories, we have base types

(⊢ Ob type),
(x, y : Ob ⊢ Hom(x, y) type),
(x, y : Ob, f , g : Hom(x, y) ⊢ EqHom(f , g) type),

The other types are derived from these, e.g. over the context (x, y : Ob, f :
Hom(x, y)), we have a type of sections of f :

(s : Hom(y, x))× EqHom(f ◦ s, id).

• The terms of T correspond to the (derived) operations of the theory. The theory
of categories has two generating terms id and (− ◦ −). Other terms include for
instance n-ary composition over a context consisting of a sequence of n composable
morphisms.

• Two terms of T being equal corresponds to the existence of a (derived) equation
between two operations.

• Syntactic signatures for GATs correspond to Σ-CwFs that are presented by col-
lections of generating types, generating terms and generating equations between
terms. They satisfy a universal property in the 1-category of Σ-CwFs and strict
morphisms.

4.1 Definition and examples

Definition 4.1.1. A generalized algebraic theory, or GAT, is a type-presented Σ-CwF.
A GAT morphism is a strict Σ-CwF morphism (it does not have to preserve the base

types). We write GAT for the category of GATs. ⌟

Restricting GATs to type-presented Σ-CwFs is needed so that the semantics can be
developed by looking at strict morphisms (T → −) rather than pseudo-morphisms
(T →ps −). Indeed, as shown in proposition 3.3.17, any pseudo-morphism (T →ps −)
can uniquely be replaced by a strict morphism. The restriction to type-presented Σ-CwFs
is similar to the restriction of Lawvere theories to categories whose underlying set of
objects is exactly N.

A type-presented GAT is typically an {Ity, Itm, Etm}-cellular Σ-CwF, i.e. a Σ-CwF
obtained by repeatedly extending the initial Σ-CwF by a new type, a new term, or a

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 55

new equality between terms. Indeed, the base types can then be read from the cellular
presentation, so as to obtain a type-presented Σ-CwF. More concretely, any {Ity, Itm, Etm}-
cellular Σ-CwF can be seen as a {Ibty, Itm, Etm}-cellular Σ-CwF with base types, which
is type-presented. Equations between base types are also allowed by our definition of
GAT, but they are never used in concrete presentations.

When presenting a GAT, instead of explicitly giving its construction as a {Ity, Itm, Etm}-
cellular object, we write a signature listing its generating types, terms and equalities
between terms. The notion of signature is kept informal for now, but we will see formal
notions of finite signatures in section 4.4.

Let’s consider some examples:

Example 4.1.2. The theory TSet of sets is presented by a single generating type

X : Ty.

The above presentation should be interpreted as a definition of TSet as the extension
of the initial Σ-CwF 0CwFΣ by a new type in the empty context:

TSet ≜ 0CwFΣ [⊢ X type]. ⌟

We call TSet the theory of sets because its set-valued algebras are exactly sets, but
it might have been better to call it the theory of types, since its internal algebras in a
Σ-CwF E (strict morphisms TSet → E) are exactly closed types of E . This follows from
the universal property of TSet. The only base type of TSet is the generator X.

Example 4.1.3. The theory TProp of propositions is the extension of TSet by the equation

(x, y : X)→ (x = y).

This means that TProp is defined as the following extension of TSet

TProp ≜ TSet[x, y : X ⊢ x = y]. ⌟

Example 4.1.4. The theory TFam of families is the extension of TSet by a new type

Y : X → Ty.

In other words, it is the following extension of TSet:

TFam ≜ TSet[x : X ⊢ Y(x) type]. ⌟

Example 4.1.5. The theory TE-Preord of E-preorders is presented by the following signa-
ture:

Ob : Ty,
_ ≤ _ : Ob→ Ob→ Ty,
refl : x ≤ x,
trans : x ≤ y→ y ≤ z→ x ≤ z. ⌟

An E-preorder is almost a preorder, but without truncation of the order relation.

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 56

The above signature means that TE-Preord is defined as the following sequence of
cellular extensions:

TE-Preord0 ≜ 0CwFΣ [⊢ Ob type],

TE-Preord1 ≜ TE-Preord0 [x, y : Ob ⊢ x ≤ y type],

TE-Preord2 ≜ TE-Preord1 [x : Ob ⊢ refl(x) : x ≤ x],

TE-Preord ≜ TE-Preord2 [x, y, z : Ob, f : x ≤ y, g : y ≤ z ⊢ trans(f , g) : x ≤ z].

It has two base types: (⊢ Ob type) ∈ TE-Preord and (x, y : Ob ⊢ x ≤ y type) ∈ TE-Preord.

Example 4.1.6. The theory TPreord of preorders is the extension of TE-Preord by the equa-
tion:

(f , g : x ≤ y)→ (f = g). ⌟

Example 4.1.7. The theory TPoset of posets is the extension of TPreord by the equation:

(x ≤ y)→ (y ≤ x)→ (x = y). ⌟

Example 4.1.8. The theory TE-Cat of E-categories is presented by the following signature:

Ob : Ty,
Hom : Ob→ Ob→ Ty,
EqHom : Hom(x, y)→ Hom(x, y)→ Ty,
id : Hom(x, x),
_ ◦ _ : Hom(y, z)→ Hom(x, y)→ Hom(x, z),
idl : EqHom(id ◦ f , f),
idr : EqHom(f ◦ id, f),
assoc : EqHom((f ◦ g) ◦ h, f ◦ (g ◦ h)),
refl : EqHom(f , f),
trans : EqHom(f , g)→ EqHom(g, h)→ EqHom(f , h),
sym : EqHom(f , g)→ EqHom(g, f),
_ ◦ _ : EqHom(f , g)→ EqHom(k, l)→ EqHom(f ◦ k, g ◦ l).

Note that this signature does not include any equation. ⌟

Example 4.1.9. The theory TCat of categories is the extension of TE-Cat by the following
reflection rule:

EqHom(f , g)→ (f = g),
(p : EqHom(f , g))→ (p = refl). ⌟

Example 4.1.10. There is a GAT TCwF of CwFs, extending the GAT TCat by two new sorts

ty : Ob→ Ty,
tm : (Γ : Ob)→ ty(Γ)→ Ty,

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 57

and the following operations and equations:

⋄ : Ob,
ε : Hom(Γ, ⋄),
− : (f : Hom(Γ, ⋄))→ (f = ε),
−[−] : (A : ty(Γ))→ Hom(∆, Γ)→ ty(∆),
− : (A : ty(Γ))→ A[id] = A,
− : (A : ty(Γ))→ A[f ◦ g] = A[f][g],
−[−] : (a : tm(Γ, A))→ (f : Hom(∆, Γ))→ tm(∆, A[f]),
− : (a : tm(Γ, A))→ a[id] = a,
− : (a : tm(Γ, A))→ a[f ◦ g] = a[f][g],
(−▷−) : (Γ : Ob)(A : ty(Γ))→ Ob,
⟨−,−⟩ : ((f : Hom(∆, Γ))× tm(∆, A[f])) ∼= Hom(∆, Γ ▷ A),
− : (⟨ f , a⟩ ◦ g) = ⟨ f ◦ g, a[g]⟩.

For some purposes, we may also include a sort of term equalities:

Eqtm : (x, y : tm(Γ, A))→ Ty,
(x : tm(Γ, A))→ Eqtm(x, x),
(p : Eqtm(x, y))→ (x = y),
(p, q : Eqtm(x, y))→ (p = q).

Indeed, some useful GAT morphisms T → TCwF can only be written if term equalities
are included. On the other hand, including this sort is not compatible with homotopical
semantics, as it forces a strict notion of identification between terms. ⌟

Example 4.1.11. There are GATs TCwFΣ , TCwFΣ,Πrep
, TCwFΣ,Π , etc. extending TCwF. For

example, TCwFΣ extends TCwF with the following operations and equations:

⊤ : ty(Γ),
− : ⊤[f] = ⊤,
tt : tm(Γ,⊤),
− : tt[f] = tt,
− : (x : tm(Γ,⊤))→ (x = tt),
Σ : (A : ty(Γ))(B : ty(Γ ▷ A))→ ty(Γ),
− : Σ(A, B)[f] = Σ(A[f], B[⟨ f ◦ p, q⟩]),
pair : (a : tm(Γ, A))× (b : tm(Γ, B[⟨id, a⟩])) ∼= tm(Γ, Σ(A, B)),
− : pair(a, b)[f] = pair(a[f], b[f]).

At this point, it becomes very tedious to list all operations and equations; in particular
the new operations all come together with a naturality equation. We will see in section 5.2
that these complex GATs can be computed from simpler SOGATs. ⌟

4.2 Functorial semantics

We start by defining, for any GAT T , its category of algebras AlgT .

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 58

4.2.1 Categories of algebras

Let T be a fixed GAT.

Definition 4.2.1. A T -algebra is a strict Σ-CwF morphism T → Set. ⌟

Thus, given a T -algebra M : T → Set, we have:

• For every object Γ ∈ T , a set MΓ.

• For every type (Γ ⊢ A type) ∈ T , a family MA : MΓ → Set.

• For every term (Γ ⊢ a : A) ∈ T , a dependent function Ma : (γ : MΓ)→MA(γ).

• Subject to the equations that hold in T .

When T is presented by a signature, we only need to consider this data for the generators
of T .

Example 4.2.2. By the universal property of TSet, the data of a strict Σ-CwF morphism
TSet → Set corresponds exactly to the data of a closed type of Set, i.e. of a set. The
same holds for our other example GATs, e.g. the data of a strict Σ-CwF TCat → Set
corresponds exactly to the data of a category. In such cases, we will use [M] : TX → Set
for the (unique) morphism corresponding to an object M ∈ X. The object M can be
recovered by applying [M] to the generating sorts of TX. For example, given a category
C, then its set of objects is [C]Ob, its family of morphisms is [C]Hom, etc. ⌟

Remark that the displayed category Func (over Set × Set) of functions extends
canonically to a displayed Σ-CwF over Set× Set. A displayed type of Func over a
function f : Γ1 → Γ2 and two families A1 : Γ1 → Set and A2 : Γ2 → Set is a dependent
function g : (γ : Γ1)→ A1(γ)→ A2(f (γ)). A displayed term of that type over a1 : (γ :
Γ1)→ A1(γ) and a2 : (γ : Γ2)→ A2(γ) is a proof of (γ : Γ1)→ g(γ, a1(γ)) = a2(f (γ)).

Definition 4.2.3. A morphism between T -algebras M, N : T → Set is a dependent
Σ-CwF morphism F : T → Func[M, N]. ⌟

Given a T -algebra morphism F : T → Func[M, N], we have:

• For every object Γ ∈ T , a function FΓ : MΓ → NΓ.

• For every type (Γ ⊢ A type) ∈ T , a dependent function

FA : (γ : MΓ)(a : MA(γ))→ NA(FΓ(γ)),

which is the action of F on the sort A.

• For every term (Γ ⊢ a : A) ∈ T , γ : MΓ, we have FA(Ma(γ)) = Na(FΓ(γ)).

• Note that the interpretation of terms is propositional, so any equation between
terms in T holds automatically in Func[M, N].

• Equations corresponding to the preservation of the CwF structure hold. In particu-
lar,

FΓ.A(γ, a) = (FΓ(γ), FA(γ, a)),
FΣ(A,B)(γ, (a, b)) = (FA(γ, a), FB((γ, a), b));

the action of F on derived sorts can be derived from its action on basic sorts.

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 59

Example 4.2.4. Given two sets X, Y identified with morphisms [X], [Y] : TSet → Set, the
data of a dependent Σ-CwF morphism F : TSet → Func[[X], [Y]] is isomorphic to the
data of a closed type of Func displayed over X and Y, i.e. a function from X to Y.

Similarly, the data of a TCat-algebra morphism is isomorphic to the data of a functor
between categories. ⌟

We have dependent Σ-CwF morphisms

Id : (X : Set)→ Func[X, X],
Comp : (X, Y, Z : Set, F : Func[Y, Z], G : Func[X, Y])→ Func[X, Z]

satisfying the categorical laws. Here (X, Y, Z : Set, F : Func[Y, Z], G : Func[X, Y]) is
a notation that should be interpreted in the CwF of Σ-CwFs and displayed Σ-CwFs,
it corresponds to the category of composable pairs of functions, also definable as the
pullback Func×Set Func.

This implies that the Σ-CwFs Set and Func are the Σ-CwFs of objects and morphisms
of an internal category in CwFΣ. As a consequence, the whole internal category can be
externalized: the T -algebras and T -algebra morphisms are the objects and morphisms
of a 1-category AlgT . Given a T -algebra M : T → Set, the identity morphism is given
by the composition (Id ◦M) : T → Func[M, M]. Given two composable T -algebra
morphisms F : T → Func[B, C] and G : T → Func[A, B], their composition is defined
as the composition (Comp ◦ ⟨F, G⟩) : T → Func[A, C].

Example 4.2.5. The category AlgTSet
is isomorphic to Set, the category AlgTCat

is isomor-
phic to Cat. ⌟

4.2.2 The reflective embedding of algebras into presheaves

We show that category of T -algebras is equivalent to the category of functors T → Set
preserving some finite limits corresponding to the terminal object and context extensions
of T . This means that AlgT is the category of models of a finite limit sketch and is
therefore locally finitely presentable (see Adamek and Rosicky (1994)). This implies in
particular that AlgT is complete and cocomplete.

First note that there is a forgetful functor AlgT → Psh(T op). Indeed a T -algebra
consists of a functor T → Set with additional structure, and a T -algebra morphism
consists of a natural transformation T → Func[M, N] with additional structure.

Proposition 4.2.6. The functor AlgT → Psh(T op) is fully faithful.

Proof. The action of the inclusion AlgT → Psh(T op) on morphisms forgets the action
of a dependent Σ-CwF morphism T → Func[X, Y] on types and terms. Thus we have
to show that any dependent functor T → Func[X, Y] can uniquely be extended to a
dependent Σ-CwF morphism.

Given any dependent functor F : T → Func[X, Y] and type (Γ ⊢ A type) ∈ T , we
have a commuting square

X(Γ.A) Y(Γ.A)

X(Γ) Y(Γ),

X(pA)

F(Γ.A)

Y(pA)

F(Γ)

where X(Γ.A) = (γ : X(Γ))× X(A, γ) and Y(Γ.A) = (γ : Y(Γ))×Y(A, γ).

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 60

Any action of F on types has to satisfy the equation F(Γ.A) = ⟨F(Γ), F(A)⟩, corre-
sponding to preservation of context extensions. Conversely, this equation determines an
action of F on types that preserves context extensions, namely

F(A, γ, a) = π2(F(Γ.A, (γ, a))).

The action on terms is then uniquely determined since F preserves sections. Therefore
any dependent functor T → Func[X, Y] can uniquely be extended to a dependent
Σ-CwF morphism.

Proposition 4.2.7. A presheaf M : Psh(T op) is in the essential image of the inclusion AlgT →
Psh(T op) if and only if M(1T) is terminal and for any (∂A ⊢ A type) ∈ T , squares of the
following form are pullback squares:

M(Γ.A) M(∂A.A)

M(Γ) M(∂A).

M(pA[x])

M(⟨x,qA[x]⟩)

M(pA)

M(x)

Proof. The condition from the statement says that M : T → Set should preserve the
terminal object and context extensions up to isomorphism. This is equivalent to M being
a pseudo-morphism of Σ-CwFs (by proposition 3.3.3). But T is type-presented, so there
is by proposition 3.3.17 a strict Σ-CwF morphism M′ : T → Set and an isomorphism
M ∼= M′. Thus M is in the essential image of the inclusion.

Corollary 4.2.8. The category AlgT is complete and cocomplete.

Proof. See for example Adamek and Rosicky (1994).

Proposition 4.2.9. For every Γ ∈ T , the representable presheafよ(Γ) ∈ Psh(T op) is in the
essential image of the inclusion AlgT → Psh(T op).

Proof. By proposition 4.2.7, it suffices to check that T (Γ, 1T) is terminal and that squares
of the following form are pullback squares:

T (Γ, ∆.A) T (Γ, ∂A.A)

T (Γ, ∆) T (Γ, ∂A).

(pA[x]◦−)

(⟨x,qA[x]⟩◦−)

(pA◦−)

(x◦−)

This follows from the fact that the square

∆.A ∂A.A

∆ ∂A,

pA[x]

⟨x,qA[x]⟩

pA

x

is a pullback square in T .

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 61

4.2.3 Displayed algebras

One may want to equip the category AlgT with additional structure. Its category
structure arose from the data of an internal category (Set, Func) in CwFΣ. Additional
structure on categories of algebras can be obtained by equipping this internal category
with additional structure.

We are here interested in notions of displayed algebras and sections thereof, which
should be the types and terms of a Σ-CwF structure on AlgT . A displayed TSet-algebra
should be a family, while a displayed TCat-algebra should be a displayed category.

Construction 4.2.10. We extend the displayed category Fam to a displayed Σ-CwF over
Set.

• A type of Fam over a family X′ : X → Set displayed over a type A : X → Set of
Set is a family

A′ : (x : X)→ X′(x)→ A(x)→ Set.

• A term of Fam over a family A′ : (x : X) → X′(x) → A(x) → Set and displayed
over a term a : (x : X)→ A(x) of Set is a dependent function

a′ : (x : X)(x′ : X′(x))→ A′(x, x′, a(x)).

• The context extension of a displayed type

A′ : (x : X)→ X′(x)→ A(x)→ Set

is the family
(X′.A′)(x, a) ≜ (x′ : X′(x))× A′(x, x′, a).

• We omit the other components. ⌟

Construction 4.2.11. We extend the displayed category Sect to a displayed Σ-CwF over
Fam.

• A type of Sect over a section f : (x : X) → X′(x) displayed over a type A′ : (x :
X)→ X′(x)→ A(x)→ Set of Fam is a dependent function

g : (x : X)(a : A(x))→ A′(x, f (x), a).

• A term of Fam over a family f : (x : X)(a : A(x))→ A′(x, x′(x), a) and displayed
over a term a′ : (x : X)(x′ : X′(x)) → A′(x, x′, a(x)) of Fam is a witness of the
equality

(x : X)→ a′(x, f (x)) = g(x, a(x)). ⌟

• The context extension of a displayed type

g : (x : X)(a : A(x))→ A′(x, f (x), a)

is the section
(f .g)(x, a) ≜ (f (x), g(x, a)).

• We omit the other components.

Definition 4.2.12. Let X : T → Set be a T -algebra. A displayed T -algebra over X is a
dependent Σ-CwF morphism T → Fam[X]. ⌟

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 62

Definition 4.2.13. Let Y : T → Fam[X] be a displayed T -algebra over a base X. A
section of Y over X is a displayed Σ-CwF morphism T → Sect[X, Y]. ⌟

Example 4.2.14. A computation shows that displayed TCat-algebras and their sections are
exactly displayed categories and their sections as defined in section 2.2. Indeed, by the
universal property of TCat, a displayed TCat-algebra D : T → Fam[C] over C : T → Set
consists of:

• a family DOb : COb → Set,

• a family

DHom : (x : COb)× (y : COb)

→ (x′ : DOb(x))× (y′ : DOb(y))→ CHom(x, y)→ Set,

• a dependent function Did : (x : COb)→ (x′ : DOb(x))→ DHom(Cid(x)),

• etc. ⌟

The algebras, algebra morphisms, displayed algebras and sections thereof should
form a Σ-CwF. Because we want to not only define Σ-CwFs of set-valued algebras, but
also Σ-CwFs of internal algebras, we defer its definition until later.

4.2.4 Adjunction induced by GAT morphisms

Given any GAT morphism F : T1 → T2, there is a functor F∗ : AlgT2
→ AlgT1

, defined
by precomposition with F. Indeed, the components of AlgT1

are all defined as certain
morphisms (T1 → −), which can be precomposed with F : T2 → T1. This is the action
on morphisms of a functor Alg : GATop → CwFΣ.

We now check that F∗ : AlgT2
→ AlgT1

admits a left adjoint F! : AlgT1
→ AlgT2

.

Lemma 4.2.15. For any GAT T and algebra M ∈ AlgT , the coslice category (AlgT \M) is
the category of algebras of a GAT T [\M], and the projection functor (AlgT \M)→ AlgT is
induced by a GAT morphism T → T [\M]. Moreover, the morphism T → T [\M] preserves
base types and is a type-presented extension.

Proof. We construct T [\M] as an extension of T (in CwFbase
Σ).

• For every object X ∈ T and (x : X) ∈M, there is a new term (⊢ gx : X) ∈ T [\M].

• For every type (X ⊢ Y type) ∈ T and (y : Y(x)) ∈ M, there is a new term
(⊢ gy : Y[gx]) ∈ T [\M].

• For every morphism (f : X → Y) ∈ T and (x : X) ∈M, we have f (gx) = gM f (x).

• For every term (X ⊢ f : Y) ∈ T and (x : X) ∈M, we have f (gx) = gM f (x).

Because we only add new (closed) terms and equations between terms, T [\M] is
still type-presented, with the same base types as T . It is clear from the universal property
of T [\M] that AlgT [\M]

∼= (AlgT \M).

Theorem 4.2.16. For any GAT morphism F : T1 → T2, the functor F∗ : AlgT2
→ AlgT1

has a
left adjoint F! : AlgT1

→ AlgT2
.

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 63

Proof. It suffices to prove that for every T1-algebra M, the comma category (M ↓ F∗),
whose objects are pairs of N : AlgT2

and g : M→ F∗(N), has an initial object. Note that
the comma category (M ↓ F∗) can be computed as the following pullback:

(M ↓ F∗) (AlgT1
\M)

AlgT2
AlgT1

.

⌟

F∗

By lemma 4.2.15 the coslice category (AlgT1
\M) is the category of algebras of a GAT

T1[\M].
The comma category (M ↓ F∗) is therefore the category of algebras of the GAT T3

computed as the following pushout:

T1 T2

T1[\M] T3.
⌜

F

The Σ-CwF T3 is type-presented because it is a type-presented extension of the GAT
T2. Indeed, the Σ-CwF morphism T1 → T1[\M] is a type-presented extension and
type-presented extensions are preserved by pushouts.

4.3 Internal algebras

We have now defined the category of set-valued algebras of a GAT T . Thanks to
functorial semantics, we may also consider algebras valued into any other E ∈ CwFΣ,
that is functors T → E . We are interested in particular in functors T1 → AlgT2

valued in
other categories of algebras, and in functors T1 → Psh(C) valued in presheaf categories.

4.3.1 Definitions

Definition 4.3.1. Let T be a GAT and E be a Σ-CwF. An internal T -algebra in E is a
Σ-CwF morphism T → E . ⌟

Example 4.3.2. An internal TSet-algebra in E is a closed type of E .
An internal TPreord-algebra in E is an internal preorder in E , consisting of:

• A closed type (⊢ Ob type) ∈ E ;

• A type (x, y : Ob ⊢ x ≤ y type) ∈ E ;

• A term (x : Ob ⊢ refl(x) : x ≤ x) ∈ E ;

• A term (x, y, z : Ob, f : y ≤ z, g : x ≤ y ⊢ trans(f , g) : x ≤ z) ∈ E ;

• A term equality (x, y : Ob, f , g : x ≤ y ⊢ f = g) ∈ E . ⌟

Definition 4.3.3. We define a dependent functor

Arr : (E : CwFΣ)→ DispCwFΣ[E × E].

⌟

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 64

Construction. Take E : CwFΣ. The underlying displayed category of Arr(E) is the arrow
displayed category of E . The rest of the components are defined analogously to the
components of Func:

• A displayed type of Arr(E) over (αX : X1 → X2) ∈ E , (X1 ⊢ A1 type) ∈ E and
(X2 ⊢ A2 type) ∈ E is a term

(x : X1, a : A1(x) ⊢ αA(x, a) : A2(αX(x)) ∈ E .

• A displayed term of type αA as above over (X1 ⊢ a1 : A1) ∈ E and (X2 ⊢ a2 : A2)
is a witness of the equality

(x : X1 ⊢ αA(x, a1(x)) = a2(αX(x))) ∈ E .

• We omit the other components.

We obtain functoriality for free from the fact that this construction is induced by a
GAT morphism TDispCwFΣ

→ TCwFΣ .

Definition 4.3.4. A morphism of internal T -algebras between M, N : T → E is a Σ-CwF
morphism F : T → Arr(E)[M, N]. ⌟

Definition 4.3.5. We define a dependent functor Fam : (E : CwFΣ)→ DispCwFΣ[E]. ⌟

Construction. Take E : CwFΣ.

• A displayed object of Fam(E) over X ∈ E is a type

(x : X ⊢ X′(x) type) ∈ E .

• A displayed morphism of Fam(E) over f : X → Y, X′ and Y′ is a term

(x : X, x′ : X′(x) ⊢ f ′(x) : Y′(f (x))) ∈ E .

• A displayed type of Fam(E) over (X ⊢ A type) and X′ is a type

(x : X, x′ : X′(x), a : A(x) ⊢ A′(x, x′, a) type) ∈ E .

• A displayed term of type A′ as above over (X ⊢ a : A) is a term

(x : X, x′ : X′(x) ⊢ a′(x, x′, a) : A′(x, x′, a(x))) ∈ E .

• The extension of a context X′ by a type A′ is the type

(x : X, a : A(x) ⊢ (x′ : X′(x))× (a′ : A′(x, x′, a)) type) ∈ E .

• We omit the rest of the components.

We obtain functoriality for free from the fact that this construction is induced by a
GAT morphism TDispCwFΣ

→ TCwFΣ .

Definition 4.3.6. An internal displayed T -algebra over M : T → E is a Σ-CwF mor-
phism M′ : T → Fam(E)[M]. ⌟

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 65

Definition 4.3.7. We define a dependent functor Sect : (E : CwFΣ)→ DispCwFΣ[Fam(E)].
⌟

Proof. Take E : CwFΣ.

• A displayed object of Sect(E) over X ∈ E and X′ ∈ Fam(E)[X] is a term

(x : X ⊢ αX(x) : X′(x)) ∈ E .

• A displayed morphism of Sect(E) over f : X → Y, f ′, αX and αY is a witness of
the equality

(x : X ⊢ f ′(x, αX(x)) = αY(f (x))) ∈ E .

• A displayed type of Sect(E) over (X ⊢ A type), X′, A′ and αX is a term

(x : X, a : A ⊢ αA(x, a) : A′(x, αX(x), a) ∈ E .

• A displayed term of type αA as above over (X ⊢ a : A) and a′ is a witness of the
equality

(x : X ⊢ a′(x, αX(x)) = αA(x, a(x))) ∈ E .

• We omit the rest of the components.

As before, we obtain functoriality for free from the fact that this construction is
induced by a GAT morphism TDispCwFΣ

→ TCwFΣ .

Definition 4.3.8. A section of an internal displayed T -algebra M′ : T → Fam(E)[M] is
a Σ-CwF morphism S : T → Sect(E)[M′]. ⌟

4.3.2 CwFs of internal algebras

Our goal should now be to define a functor

Alg : GATop ×CwFΣ → CwFΣ,

where Alg(T , E) the Σ-CwF of internal T -algebras in E .
Unfortunately all of the approaches that I know of require an extremely large amount

of easy but tedious constructions, so I will only give a discussion of possible approaches
for the construction and outline the main difficulties.

In addition to internal algebras, one also wants to construct the tensor product of
GATs: the tensor product (−⊗ T) should be left adjoint to Alg(T ,−); in particular we
would have isomorphisms

(T1 ⊗ T2 → E) ∼= (T1 → Alg(T2, E)),

which further internalize to

Alg(T1 ⊗ T2, E) ∼= Alg(T1, Alg(T2, E)).

Moreover, the tensor product and the internal algebra functor should be part of a closed
symmetric monoidal category structure on GATs. This suggests two approaches:

• Start with internal algebra functor and derive the tensor product as a left adjoint.

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 66

• Start with the tensor product and derive the internal algebra functor as a right
adjoint.

In either case, one can use the fact that (T ⊗−) ought to preserve colimits and Alg(−, E)
ought to send colimits to limits, together with cellular presentations of GATs.

We have defined the category structure of AlgT from an internal category in CwFΣ.
Similarly, we should expect to define the Σ-CwF structure of Alg(T , E) from an internal
Σ-CwF in CwFΣ. The CwFs and displayed CwFs E , Arr(E), Fam(E) and Sect(E) should
be the interpretations of the sorts of this internal Σ-CwF.

There is unfortunately a first issue with this approach: some of the Σ-CwF operations
can only be interpreted as pseudo-morphisms of Σ-CwFs, instead of strict morphisms.
Consider the functor Σ : Fam → Set that sends a family to its total space, and which
should be used to interpret context extensions. This functor cannot be extended to a
strict Σ-CwF morphism, because it does not preserve context extensions strictly: the sets

((x : X)× (y : Y(x)))× ((x′ : X′(x))×Y′(x, y, x′))

and
((x : X)× (x′ : X′(x)))× ((y : Y(x))×Y′(x, y, x′))

are isomorphic but not strictly equal. This functor is however a pseudo-morphism of
Σ-CwFs.

Interpreting the Σ-CwF operations as pseudo-morphisms suffices, since we can later
strictify any pseudo-morphism with source T . This however means that we cannot
easily rely on general results on the externalization of internal algebras. Generally,
although AlgT (E) should morally be defined as the externalization at T of an internal
Σ-CwF µ(E) in CwFΣ, an explicit definition of µ(E) as an algebraic structure requires a
bit too much effort; it is simpler to define all of the components of AlgT (E) directly.

Remark 4.3.9. An internal category in Cat is called a double category. A double category
has objects, horizontal morphisms, vertical morphisms, and squares involving horizontal
and vertical morphisms.

Accordingly, an internal Σ-CwF in CwFΣ could be called a double Σ-CwF. A double
Σ-CwF has an underlying double category, as well as horizontal and vertical types,
horizontal and vertical terms, and more exotic sorts (horizontal morphisms between
vertical types, double types, double terms, etc.), for a total of 16 sorts.

CwFs are already a rather large algebraic structure, but double CwFs are so large
that listing all the sorts already spans one page, and unfolding the whole structure by
hand is not feasible.

We can estimate the number of operations and equations in a presentation of double
Σ-CwFs. We will later define the tensor product of GATs. Internal TCwFΣ -algebras in
AlgTCwFΣ

are in bijection with algebras of (TCwFΣ ⊗ TCwFΣ). When two GATs T1 and T2

have s1, s2 generating sorts, o1, o2 generating operations and e1, e2 generating equations,
then their tensor product (T1 ⊗ T2) has s1s2 generating sorts, o1s2 + s1o2 generating
operations and e1s2 + o1o2 + s1e2 generating equations. The theory TCwFΣ is presented
using 4 sorts, 17 operations and 17 equations, so double Σ-CwFs can be presented with
16 sorts, 136 operations and 425 equations.

This structure corresponds approximately to the large table that is constructed
by Kaposi, Kovács, and Altenkirch (2019), also for the purpose of defining the CwF of
algebras of any GAT (described by a QIIT-signature). ⌟

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 67

Remark 4.3.10. The construction of Alg(T , E) is closely related to the construction of the
linear arrow C ⊸ D in clans with strictly commuting limits by Moeneclaey (2022).

Moeneclaey uses clans with strictly commuting limits so as to obtain a closed sym-
metric monoidal structure over the 1-category of clans with strictly commuting limits,
whereas they are morally interested in the 2-category of clans. This is similar to our
situation: we use the 1-category of type-presented Σ-CwFs as a presentation of the
2-category of Σ-CwFs and pseudo-morphisms. ⌟

We will need the following fact.

Proposition 4.3.11 (Equivalence between internal models and presheaves of models).
For any category C and GAT T , there is an equivalence of categories

AlgT (Psh(C)) ∼= Cat(Cop, AlgT),

between internal T -algebras in Psh(C), and functors from Cop to T -algebras.

Proof. This is well-known for sketches or finite limits theories, see for example Johnstone
2002, p. D1.2.14.

Proposition 4.3.11 would normally be derived from the fact that the tensor product
of GATs is symmetric. Indeed, for any category C, there is a GAT TPsh(C) that classifies
presheaves over C. Then the result is an equivalence

AlgTPsh(C)
(AlgT (Set)) ∼= AlgT (AlgTPsh(C)

(Set)),

which would follow from the isomorphism TPsh(C) ⊗ T ∼= T ⊗ TPsh(C).
When working in the multimodal internal language of a presheaves, there is a further

equivalence
AlgT (Psh(C)) ∼= □(Alg∆T (Setc))

between internal T -algebras and ∆T -algebras in the internal language, where ∆T is the
internal GAT at mode c corresponding to the external GAT T .

4.4 Finitely generated algebras

Let T be a GAT. Proposition 4.2.9 implies that the Yoneda embedding よ : T op →
Psh(T op) induces a fully faithful functor H : T → Algop

T such that morphisms H(Γ)→
M are in natural bijection with elements (γ : Γ) ∈ M. In other words, H(Γ) is the
algebra freely generated by an element of the sort Γ.

The goal of this section is to construct a stricter functor 0T [−] : T → Algop
T , whose

image also consists of the finitely generated algebras of T . By “stricter”, we mean that
0T [−] is not only a functor, but also a strict Σ-CwF morphism. For a presented GAT
T , an object Γ of T can then be seen as a syntactic signature presenting the finitely
generated algebra 0T [Γ]. Because 0T [−] is a Σ-CwF morphism, 0T [Γ] can be computed
by induction over the “signature” Γ.

Definition 4.4.1. A extension of a algebra M : AlgT is a map of the form

M→M[x : A(σ)]

where (∂A ⊢ A type) is a type of T and (σ : ∂A) ∈M.

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 68

Concretely, the extension M→M[x : A(σ)] is defined as the chosen pushout

H(∂A) M

H(∂A.A) M[x : A(σ)],

⟨σ⟩

⌜⟨σ,x⟩

which satisfies the necessary universal property. In particular, a extension depends only
on (∂A, A, σ), not on the choice of the map M→M[x : A(σ)]. ⌟

Construction 4.4.2. We equip the category Algop
T with the structure of a Σ-CwF.

• The types over M ∈ AlgT are the extensions of M. The restriction of an extension
M → M[x : A(σ)] along a morphism F : M → N is the extension N → N [x :
A(F(σ))]. These restrictions are strictly functorial, since these extensions are all
computed as pushouts of H(∂A)→ H(∂A.A).

• The terms of type i : M → M[x : A(σ)] are the elements (x : A(σ)) ∈ M
(or, equivalently, the retractions of i). The restriction of (x : A(σ)) ∈ M along
F : M → N is the element (F(x) : A(F(σ)) ∈ N . These restrictions are strictly
functorial.

• The extension of a context by a type M → M[x : A(σ)] is the codomain M[x :
A(σ)], as witnessed by its universal property.

• The 1- and Σ- types are defined using the 1- and Σ-types of T .

– The 1-type is given by the extension M→M[x : 1].

– The dependent sum of M → M[a : A(σ)] → M[a : A(σ)][b : B(τ(a))] is
the extension M→M[x : (a : A(σ))× B(τ(a))]. ⌟

Proposition 4.4.3. The functor H : T → Algop
T extends to a pseudo-morphism of Σ-CwFs.

Proof. We define its action on types: a type (∂A ⊢ A type) is mapped to the extension

H(∂A)→ H(∂A)[x : A],

i.e. the pushout of H(∂A)→ H(∂A.A) along id : H(∂A)→ H(∂A).
The weak preservation of the terminal object follows from the universal property of

H(1T).
We have to check that context extensions are weakly preserved, which follows from

the fact that H(∂A)[x : A(σ)] satisfies the universal property of H(∂A.A).
The action on terms is then uniquely determined by the action on morphisms.

Proposition 4.4.4. The pseudo-morphism H : T → Algop
T is essentially surjective on types

and bijective on terms.

Proof. As H is fully faithful, it is bijective on terms, since terms can be identified with
sections of projection maps.

Take Γ ∈ T and an extension H(Γ)→ H(Γ)[x : A(σ)]. The element (σ : ∂A) ∈ H(Γ)
corresponds to (γ : Γ ⊢ σ(γ) : ∂A) ∈ T . Thus we can consider the type (γ : Γ ⊢
A(σ(γ)) type) ∈ T and its image by H, which is the pushout of H(Γ) → H(Γ.A[σ])
along id : H(Γ) → H(Γ). Since it has the universal property of H(Γ)[x : A(σ)], it is
isomorphic to it. Thus the actions of H on types are essentially surjective.

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 69

By proposition 3.3.17, since T is type-presented, there is a strict Σ-CwF morphism
0T [−] : T → Algop

T that is naturally isomorphic to H. Then 0T [−] is also fully faithful,
essentially surjective on types and bijective on terms.

Example 4.4.5. We can consider some objects of TCat, for example

(x : Ob),
(x, y : Ob),
(x, y : Ob, f : Hom(x, y)),
(x, y : Ob, f : Hom(x, y), g : Hom(y, x), p : EqHom(g ◦ f , id)).

Then they are sent to freely generated categories that would typically be described
by the following diagrams:

{x},
{x y},
{x → y}, x y x.

f

id

g

 ⌟

4.5 Trivial fibrations

We write IT for the set of all extensions of T -algebras (defined in definition 4.4.1).

Definition 4.5.1. A morphism F : M → N of algebras is a trivial fibration if for
every type (∂A ⊢ A type) ∈ T , the following lifting condition is satisfied: for every
boundary (σ : ∂A) ∈M and element (a : Y(F(σ))) ∈ N , there merely exists an element
(a0 : Y(σ)) ∈M such that F(a0) = a. ⌟

The trivial fibrations are the maps in the right class of a weak factorization system
generated by IT . The maps in the left class are called cofibrations.

We call split trivial fibrations the maps in the right class of the algebraic weak
factorization system generated by IT , and algebraic cofibrations the maps in the left
class.

If T is type-presented, we write IbaseT for the subset of IT spanned by the base types.
For example, IbaseTCat

consists of the functors

IOb : {} → {x},
IHom : {x, y} → {x → y},
IEqHom : {x ⇒ y} → {x → y},

which are the generic extensions by a new object, a new morphism, or a new morphism
equality.

Lemma 4.5.2. Assume that T is type-presented. Then the extensions coincide with the finite
IbaseT -cellular maps.

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 70

Proof. A finite IbaseT -cellular map is a finite composition of pushouts of maps in IbaseT .
A type of T is an iterated dependent sum of substitutions of base types. There is
a correspondence between these two decompositions. The correspondence becomes
bijective if we only allow left-nested iterated dependent sums.

Corollary 4.5.3. A morphism between T -algebras is a trivial fibration if and only if it satisfies
the right lifting property with respect to IbaseT . A morphism between T -algebras is a split trivial
fibration if and only if it equipped with a right lifting structure with respect to IbaseT .

4.6 Congruences and fibrant congruences

In Set = AlgTSet
, a map f : X → Y is a trivial fibration (surjective) if and only if it

is the quotient inclusion for the equivalence relation that identifies x1, x2 : X when
f (x1) = f (x2), i.e. the kernel of f . In this section we study a similar characterization of
trivial fibrations in categories of algebras of arbitrary GATs.

Quotients in cocomplete categories are generally computed as coequalizers of dia-
grams R ⇒ C, where R is a subobject of C × C. For general GATs, computing quotients
can be complex, since identifying two elements can allow the formation of new elements
that were not present in the original algebra.

Some examples can be found by looking at categories; general quotients of categories
have been studied by Bednarczyk, Borzyszkowski, Pawlowski, and Barr (1999). Consider

the quotient q : X → Q(X) of the category X ≜ {x f−→ y a
g−→ b} by the relation that

identifies y and a. In the quotient, we can form the composition q(g) ◦ q(f) : q(x) →
q(b) of f and g, yet there is no morphism x → y in the original category.

In other words, the quotient inclusion q is not a trivial fibration, since the morphism
q(g) ◦ q(f) does not have a preimage. In order to obtain a trivial fibration, we would
need to have, at the very least, an isomorphism y ∼= a in the original category, corre-
sponding to a lift of the identity id : q(y) ∼= q(a). More generally, we will see that the
projection Hom → Ob×Ob, when equipped with the structure of a setoid morphism
induced by the chosen equivalence relations, should be a setoid fibration.

Construction 4.6.1. By setoid we mean a set equipped with a (proof-irrelevant) equiva-
lence relation. The category Setoid is equipped with the structure of a Σ-CwF, displayed
over the Σ-CwF of sets: indeed Setoid is the category of algebras of a GAT TSetoid. ⌟

Definition 4.6.2. A congruence on an algebra M is a dependent Σ-CwF morphism
M̃ : T → Setoid[M]. ⌟

If X is an object or type of T , we write (x ∼ x′) ∈ M̃ when x and x′ are related
elements of MX at the equivalence relation M̃X.

Example 4.6.3. Consider the theory of categories and a base category C. Using the univer-
sal property of TCat, a congruence C̃ can be decomposed into the following components:

• An equivalence relation (− ∼ −) ∈ C̃ on objects of C.

• A displayed equivalence relation (− ∼ −) ∈ C̃ on morphisms of C displayed twice
over the equivalence relation on objects.

This means that morphisms (f : x → y) and (g : x′ → y′) can be compared as long
as (x ∼ x′) ∈ C̃ and (y ∼ y′) ∈ C̃.

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 71

• Such that the equivalence relations preserve identities and compositions:

(x ∼ x′) ∈ C̃ → (id(x) ∼ id(x′)) ∈ C̃,

(f ∼ f ′) ∧ (g ∼ g′)→ ((f ◦ g) ∼ (f ′ ◦ g′)) ∈ C̃,

where (f ∼ f ′) ∧ (g ∼ g′) presupposes the relevant relations between the sources
and targets of the morphisms. ⌟

Given two congruences M̃ and M over the same base algebra M, we write M̃ ⊆M
when there is an implication (y1 ∼ y2) ∈ M̃Y =⇒ (y1 ∼ y2) ∈ MY for every sort
(X ⊢ Y type) ∈ T , or equivalently when there is a natural transformation M̃⇒M in
T → Setoid lying over the identity natural transformation on M.

Definition 4.6.4. Let F : M → N be a morphism of algebras. The kernel of F is the
congruence kerF : T → Setoid over M defined by:

((x1 ∼ x2) ∈ kerF) ⇐⇒ F(x1) = F(x2)

for every X ∈ T and

((y1 ∼ y2) ∈ kerF) ⇐⇒ F(y1) = F(y2)

for every (X ⊢ Y type) ∈ T . ⌟

Definition 4.6.5. A quotient of a congruence M̃ is an algebra Q along with a morphism
q : M→ Q such that M̃ ⊆ kerq, and satisfying the following universal property: for
every other morphism F : M → N such that M̃ ⊆ kerF, there is a unique morphism
F̃ : Q→ N such that F = F̃ ◦ q. ⌟

Proposition 4.6.6. A quotient of a congruence M̃ is exactly a coequalizer of

(P ◦ M̃) M×M M,

where P : Setoid→ Set is the Σ-CwF pseudo-morphism that sends X̃ to

(x1 : X)× (x2 : X)× ((x1 ∼ x2) ∈ X̃),

and (P ◦ M̃) is strictified using proposition 3.3.17.

Proof. It follows from the observation that for any morphism F : M → N , we have

M̃ ⊆ kerF if and only if (P ◦ M̃) ⇒ M F−→ N commutes.

In particular, since AlgT is cocomplete, quotients always exist.

Definition 4.6.7. A dependent setoid Ỹ over a base setoid X̃ is fibrant if for every
(x1 ∼ x2) ∈ X̃ and y1 ∈ Y(x1), there exists some y2 ∈ Y(x2) such that (y1 ∼ y2) ∈ Ỹ. ⌟

The fibrant dependent setoid determine the types of a subCwF Setoidfib of the CwF
Setoid of setoids.

Proposition 4.6.8. The quotient functor Q : Setoidfib → Set extends to a pseudo-morphism of
Σ-CwFs.

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 72

Proof. It suffices to show that Q preserves the terminal object and context extensions up
to isomorphism. The preservation of the terminal object is immediate. The preservation
of context extensions boils down to the fact that Q preserves pullback squares when one
of the maps is a fibration. Take a pullback square

B Y

A X,

⌟
p

f

in Setoid, such that the map p : Y → X is a fibration.
There is a canonical map g : Q(B) → Q(A)×Q(x) Q(Y), specified by g([(a, y)]) =

([a], [y]). Our goal is to prove that it is an isomorphism.
We define the inverse map g−1 : Q(A) ×Q(x) Q(Y) → Q(B) using the universal

properties of the quotients Q(A) and Q(B). Take a pair ([a], [y]) in Q(A)×Q(x) Q(Y).
We have [f (a)] = [p(y)], i.e. f (a) = q(y) in the setoid X. Since p : Y ↠ X is a fibration,
there merely exists an element y′ : Y such that p(y′) = f (a) and y ∼ y′. We then merely
have an element [(a, y′)] of Q(B). Thanks to the definition of Q(B) as a quotient, this
element does not depend on the choices of a, y and y′ in their equivalence classes. Thus
this determines a map g−1 : Q(A)×Q(x) Q(Y)→ Q(B).

It is then straightforward to prove that g−1 is an inverse of g, using the universal
properties of the quotients Q(A), Q(Y) and Q(B).

It can be shown that the fibrancy assumption is necessary.

Proposition 4.6.9. The quotient functor Q : Setoid → Set does not extend to a pseudo-
morphism of Σ-CwFs.

Proof. We show that Q does not preserve pullbacks. Consider the cospan {• •} →
{• ∼ •} ← {• •} in Setoid. The quotient of its pullback has two elements, but the
pullback of the quotients has four elements.

Definition 4.6.10. A congruence M̃ is said to be fibrant if it factors through the inclusion
Setoidfib ↪→ Setoid, or equivalently if for every type (X ⊢ Y type) ∈ T , the dependent
setoid M̃Y is fibrant over M̃X. ⌟

Lemma 4.6.11. Given a fibrant congruence M̃, the strictification of the pseudo-morphism
(Q ◦ M̃) : T → Set is a quotient Q(M̃) of M̃. The quotient inclusion q : M → Q(M̃) is
defined pointwise as the quotient inclusion qX : MX → Q(M̃X).

Proof. We verify the universal property of the quotient.
Let F : M→ N be a morphism such that M̃ ⊆ N . By the universal property of the

quotient set Q(M̃X), there is a unique map F̃X : Q(M̃X)→ NX such that F̃X ◦ qX = Fx.
The universal properties of the quotient sets implies that this assignment is natural in
X, thus defining a morphism F̃ : Q(M̃) → N such that F̃ ◦ q = F. The unicity of the
components F̃X imply that this morphism is the unique factorization of F through q.

Thus Q(M̃) is a quotient of M̃.

Corollary 4.6.12. If M̃ is a fibrant congruence, then the quotient inclusion q : M→ Q(M̃)

is a trivial fibration in AlgT , and M̃ = kerq.

CHAPTER 4. FIRST-ORDER GENERALIZED ALGEBRAIC THEORIES 73

Proof. By lemma 4.6.11, every component of q is a quotient inclusion at the level of sets,
and is therefore surjective.

Conversely, we can prove that all trivial fibrations arise in this way.

Proposition 4.6.13. If F : M → N is a trivial fibration in AlgT , then kerF is a fibrant
congruence and N is the quotient of kerF.

Proof. We first prove the fibrancy of kerF.
Take a type (X ⊢ Y type) ∈ T . Take (x1, x2 : X) ∈M such that F(x1) = F(x2) and

take some (y1 : Y(x1)) ∈M. Since (F(y1) : Y(F(x2))) ∈ N and F is a trivial fibration,
there exists some (y2 : Y(x2)) ∈M such that F(y2) = F(y1). This proves the fibrancy of
kerF.

We can then consider the quotient Q(kerF). Its universal property implies that the
map F factors through the quotient inclusion.

M N

Q(kerF)

F

q G

Since both F and q are trivial fibrations, the map G is also a trivial fibration, surjective
on every sort. To prove that it is an isomorphism, it suffices to prove that it is injective
on every sort.

Take a type (X ⊢ Y type) ∈ T . Take elements (x : X) ∈ Q(kerF) and (y1, y2 :
Y(x) ∈ Q(kerF) such that G(y1) = G(y2). Since q is a trivial fibration, there exists lifts
(x′ : X) ∈M, (y′1, y′2 : Y(x′)) ∈M such that q(x′) = x, q(y′1) = y1 and q(y′2) = y2. We
then have F(y′1) = F(y′2), i.e. (y′1 ∼ y′2) ∈ kerF. Therefore, q(y′1) = q(y′2), i.e. y1 = y2, as
needed.

Note that without assuming the axiom of choice, it is not possible to use this result to
construct a trivial fibration that is split. If the goal is to construct a split trivial fibration,
it may be useful to consider Setoid-valued algebras without taking their quotients.

Chapter 5

Second-order generalized algebraic
theories

We now introduce second-order generalized algebraic theories (SOGATs) and their
functorial semantics in CwFΣ,Πrep .

The semantics of SOGATs are more complicated than the semantics of GATs. An
algebra is defined not as a morphism from T to Set, but as a category C (with a terminal
object) together with a morphism from T to Psh(C) with its (Σ, Πrep)-CwF structure.

This is fine so far, but when defining e.g. algebra morphisms between algebras
with underlying categories C and D, one needs to have a (Σ, Πrep)-CwF displayed over
Psh(C)× Psh(D). The (Σ, Πrep)-CwF structure of Psh(C) is already not trivial, so we
would rather avoid having to define ad-hoc and complex (Σ, Πrep)-CwF structures.

We will observe that all the (Σ, Πrep)-CwF constructions we need actually arise from
a single general construction. For any Σ-CwF E with an internal category C, there is an
external (Σ, Πrep)-CwF pshE (C) of internal presheaves over C. When E = Set, we recover
the construction of Psh(C) for an external category C. When E = Func, an internal
category in E is exactly an external functor F, and pshFunc(F) is exactly the (Σ, Πrep)-
CwF we need to define algebras morphisms lying over F. Using other Σ-CwFs, such as
Fam and Sect, we obtain other components of the semantics of SOGATs.

Importantly, this construction psh−(−), which turns Σ-CwFs into (Σ, Πrep)-CwFs,
has a left adjoint. The left adjoint turns (Σ, Πrep)-CwFs into Σ-CwFs, and restricts to a
functor that turns SOGATs into GATs. We use this translation from SOGATs to GATs to
define the semantics of SOGATs from the semantics of GATs. Past or future semantic
constructions at the level of GATs can then be applied to SOGATs.

5.1 Definition and examples

Definition 5.1.1. A second-order generalized algebraic theory, or SOGAT, is a type-
presented (Σ, Πrep)-CwF.

A morphism between SOGATs is a morphism in CwFΣ,Πrep . ⌟

SOGATs are defined just like GATs, but it is now possible to use the Π-types to
express second-order operations.

Example 5.1.2. The SOGAT TFamrep of families with representable elements is presented

74

CHAPTER 5. SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES 75

by the following signature:

ty : Ty,
tm : ty→ Tyrep

This means that the (Σ, Πrep)-CwF TFamrep is defined as the following extension of
0Σ,Πrep :

TFamrep = 0Σ,Πrep [⊢ ty type][A : ty ⊢ tm(A) typerep]. ⌟

Example 5.1.3. The SOGAT TΣ of families with Σ-types is the extension of TFamrep by the
following signature:

1 : ty,
tt : tm(1),
(x, y : tm(1))→ (x = y),
Σ : (A : ty)(B : tm(A)→ ty)→ ty,
pair : (a : tm(A))(b : tm(B(a)))→ tm(Σ(A, B)),
fst : tm(Σ(A, B))→ tm(A),
snd : (p : tm(Σ(A, B)))→ tm(B(fst(p))),
fst(pair(a, b)) = a,
snd(pair(a, b)) = b,
pair(fst(p), snd(p)) = p. ⌟

The SOGAT TΣ includes a second-order operation: Σ, whose second-argument is a
dependent type. When presenting TΣ as an iterated extension of TFamrep , we need to use
Π-types to specify the generator Σ:

TΣ = TFamrep [A : ty, B : Π(tm(A), ty) ⊢ Σ(A, B) : ty][· · ·].
Writing this Π-type is only allowed because the sort tm is representable.

Example 5.1.4. The SOGAT TΣ,Π of families with Σ- and Π-types is the extension of TΣ
by the following signature:

Π : (A : ty)(B : tm(A)→ ty)→ ty,
app : tm(Π(A, B)) ∼= ((a : tm(A))→ tm(B(a))) : lam. ⌟

Example 5.1.5. There is a SOGAT TΣ,Πrep of (Σ, Πrep)-families. It is an extension of TΣ.
There is a morphism TΣ,Πrep → TΣ,Π which sends tyrep to ty, corresponding to the fact

that any (Σ, Π)-family is a (Σ, Πrep)-family in which all types are representable. ⌟

Example 5.1.6. We can define a SOGAT TMLTT whose models are models of (one variant)
of Martin-Löf type theory. Here we consider MLTT with a hierarchy of universes closed
under Σ-, Π-, 1-, Bool-, Empty-, Id- and W- types.

We first define a SOGAT TU of cumulative families with universes: its components
are indexed by natural numbers corresponding to universe levels.

tyn : Ty,
tmn : tyn → Tyrep,

Un : tyn+1,
Eln : tmn+1(Un) ∼= tyn,
Liftn : tyn → tyn+1,
liftn : (A : tyn)→ tmn(A) ∼= tmn+1(Liftn(A)).

CHAPTER 5. SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES 76

We can then define an extension TU ,Π of TU :

Πn : (A : tyn)(B : tmn(A)→ tyn)→ tyn,
appn : tmn(Π(A, B)) ∼= ((a : tmn(A))→ tmn(B(a))) : lamn.

Note that for any n < ω, there is TFamrep → TU selecting the family (tyn, tmn). The
SOGAT TU ,Π could be defined as a certain colimit that glues together ω-many copies
of TΠ over the ω-many underlying families of TU . The same method could be used to
define the other negative type structures (Σ- and 1- types) in a way that is independent
of the universe levels; only the universes and the lifting operations change the universe
levels. This does not work directly for positive types (inductive types), because their
elimination principle needs to target arbitrary universe levels.

The other type-formers are also specified by SOGATs extending TU (expect for W-
types, which are defined as an extension of TU ,Π).

Empty-types We define TU ,Empty as the extension of TU specified by the following signa-
ture:

Emptyn : tyn,
absurd : (P : tm(Emptyn)→ tym)→ (x : tm(Emptyn))→ tmm(P(x)).

Bool-types

Booln : tyn,
true : tm(Booln),
false : tm(Booln),
elimBool : (P : tm(Booln)→ tym)→ tm(P(true))→ tm(P(false))
→ (b : tm(Bool))→ tm(P(b)),

− : elimBool(P, t, f , true) = t,
− : elimBool(P, t, f , false) = f .

Id-types

Idn : (A : tyn)(x, y : tm(A))→ tyn,
refl : (A : tyn)(x : tm(A))→ tm(Idn(A, x, x)),
J : (A : tyn)(x : tm(A))(P : (y : tm(A))(p : tm(Id(A, x, y)))→ tym)

→ (d : tm(P(x, refl(A, x))))(y : tm(A))(p : tm(Id(A, x, y)))
→ tm(P(y, p)),

− : J(A, x, P, d, x, refl(A, x)) = d.

W-types The specification of W-types stands out among other inductive types, because
they require the presence of Π-types.

Wn : (A : tyn)(B : tm(A)→ tyn)→ tyn,
sup : (a : tm(A))(f : tm(Π(B(a), λ− 7→W(A, B))))→ tm(Wn(A, B)),
elimW : (P : tm(W(A, B))→ tym)

→ (r : (a : tm(A))(f : tm(Π(B(a), λ− 7→W(A, B))))
(f ′ : tm(Π(B(a), λb 7→ P(app(f , b)))))→ tm(P(sup(a, f))))

→ (w : tm(W(A, B)))→ tm(P(w)),
− : elimW(P, r, sup(a, f)) = r(a, f , lam(λb 7→ elimW(P, r, app(f , b)))).

CHAPTER 5. SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES 77

Finally, TMLTT is defined as a colimit of TU ,Π, TU ,Σ, TU ,1, TU ,Empty, TU ,Bool, TU ,Id and
TU ,Π,W over TU . Equivalently, TMLTT is presented by a signature that is the concatenation
of the signatures of the subtheories. ⌟

5.2 Functorial semantics and reduction to GATs

Definition 5.2.1. An algebra of a SOGAT T consists of a category C, with a terminal
object 1C , and a strict (Σ, Πrep)-CwF morphism C : T → Psh(C). ⌟

Given an algebra (C, C), we will use the following notations. For an object X ∈ T ,
we write (Γ ⊢ x : X) ∈ C to indicate that x is an element of CX(Γ). For a type
(X ⊢ Y type) ∈ T and (Γ ⊢ x : X) ∈ C, we write (Γ ⊢ y : Y(x)) ∈ C to indicate that y is
an element of CY(Γ, x).

We defer the definition of morphism until later. We want to exhibit the algebras of
a SOGAT T as the algebras of a (first-order) GAT T fo. For example, we know that the
category of algebras of TFamrep is CwF, which is also the category of algebras of a GAT
TCwF. Among other things, this will automatically provide a complete and cocomplete
category of algebras of any SOGAT.

We write TCat1 for the GAT of categories with a chosen terminal object. We want to
find a GAT T fo extending TCat1 , i.e. with a strict Σ-CwF morphism TCat1 → T fo. Take
any category (with a terminal object) C ∈ Cat1, which can equivalently be seen as
[C] : TCat1 → Set. Then T fo should have the property that Σ-CwF morphisms T fo → Set
extending [C] : TCat1 → Set correspond to (Σ, Πrep)-CwF morphisms T → Psh(C).

Looking at morphisms T fo → Set is not enough to characterize T fo; we should look at
morphisms T fo → E for an arbitrary Σ-CwF E . Take a Σ-CwF E and an internal category
with a terminal object C in E , corresponding to a Σ-CwF morphism [C] : TCat1 → E .
We want a correspondence between Σ-CwF morphisms T fo → E extending C and
(Σ, Πrep)-CwF morphisms T → pshE (C), where pshE (C) generalizes the construction
of presheaves to internal categories. For any external category C, we should have
pshSet(C) = Psh(C). The construction of pshE (C) is detailed below.

Construction 5.2.2. Given any Σ-CwF E with base types together with an internal cate-
gory with a terminal object C (which can be identified with a strict Σ-CwF morphism
[C] : TCat1 → E), we construct a (Σ, Πrep)-CwF with base types pshE (C) of internal
presheaves over C.

• An object of pshE (C) is an internal presheaf Γ over C in E , consisting of:

– a type (x : C.Ob ⊢ Γ(x) type) ∈ E ;

– a term (f : C.Hom(x, y), γ : Γ(y) ⊢ γ[f] : Γ(x)) ∈ E ;

– an equality (x : C.Ob, γ : Γ(x) ⊢ γ[id] = γ) ∈ E ;

– an equality (f : C.Hom(y, z), g : C.Hom(x, y), γ : Γ(z) ⊢ γ[f][g] = γ[f ◦ g]) ∈
E .

• A morphism of pshE (C) from Γ to ∆ consists of:

– a term (x : C.Ob, γ : Γ(x) ⊢ δ(x, γ) : ∆(x)) ∈ E ;

– an equality (f : C.Hom(x, y), γ : Γ(y) ⊢ δ(y, γ)[f] = δ(x, γ[f])) ∈ E .

• A type of pshE (C) over Γ is an internal dependent presheaf over Γ, consisting of:

CHAPTER 5. SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES 78

– a type (x : C.Ob, γ : Γ(x) ⊢ A(x, γ) type) ∈ E ;
– a term (f : C.Hom(x, y), a : A(y, γ) ⊢ a[f] : A(x, γ[f])) ∈ E ;
– an equality (x : C.Ob, a : A(x, γ) ⊢ a[id] = a) ∈ E ;
– an equality (f : C.Hom(y, z), g : C.Hom(x, y), a : A(z, γ) ⊢ a[f][g] = a[f ◦

g]) ∈ E .

• A representable type of pshE (C) over Γ is a type A over Γ together with:

– a term (x : C.Ob, γ : Γ(x) ⊢ (x.A[γ]) : C.Ob) ∈ E ;
– a term (f : C.Hom(x, y), a : A(x, γ[f]) ⊢ ⟨ f , a⟩ : C.Hom(x, y.A[γ])) ∈ E ;
– a term (x : C.Ob, γ : Γ(x) ⊢ pA[γ] : C.Hom(x.A[γ], x)) ∈ E ;
– a term (x : C.Ob, γ : Γ(x) ⊢ qA[γ] : A(γ[pA[γ]])) ∈ E ;
– the following equalities in E :

⟨ f , a⟩ ◦ g = ⟨ f ◦ g, a[g]⟩,
pA[γ] ◦ ⟨ f , a⟩ = f ,

qA[γ][⟨ f , a⟩] = a,

over suitable contexts.

• A term of pshE (C) of type A over Γ consists of:

– a term (x : C.Ob, γ : Γ(x) ⊢ a(x, γ) : A(x, γ)) ∈ E ;
– an equality (f : C.Hom(x, y), γ : Γ(y) ⊢ a(y, γ)[f] = a(x, γ[f])) ∈ E .

• A base type of pshE (C) is a type A such that (x : C.Ob, γ : Γ(x) ⊢ A(x, γ) type) ∈ E
is a base type of E .

• The empty context, context extensions, 1-type and Σ-types are defined in the same
way as in the (Σ, Πrep)-CwF structure of external presheaf categories.

• The definition of the first-order Π-type makes use of the representability of the
domain:

Πrep(Γ, A, B)(x, γ) = B(x.A[γ], (γ[pA[γ]], qA[γ])),

Πrep(Γ, A, B)(f : y→ x, γ, b) = b[f+ : y.A[γ[f]]→ x.A[γ]],
app(Γ, A, B, b, a)(x, γ) = b(x, γ)[⟨a(x, γ)⟩ : x → x.A[γ]],
lam(Γ, A, B, b)(x, γ) = b(x.A[γ], (γ[pA[γ]], qA[γ])).

Note that the usual definition of Π-types in a presheaf category quantifies on
objects and morphisms, and therefore cannot be expressed internally to an arbitrary
Σ-CwF. ⌟

Lemma 5.2.3. The above construction determines a functor psh : (TCat1 /CwFbase
Σ)→ CwFbase

Σ,Πrep
.

Moreover, this functor is induced by a GAT morphism from the GAT of (Σ, Πrep)-CwFs with
base types into the GAT of Σ-CwFs with base types with an internal category with a terminal
object.

Proof. The existence of the GAT morphism follows from the fact that all components of
pshE (C) have been defined as finite collections of types, terms and term equalities from
E . Note that we need to include term equalities in the GAT of Σ-CwFs with an internal
category.

CHAPTER 5. SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES 79

Corollary 5.2.4. The functor psh : (TCat1 /CwFbase
Σ)→ CwFbase

Σ,Πrep
has a left adjoint.

Because (TCat1 /CwFtypres
Σ) and CwFtypres

Σ,Πrep
are coreflective subcategories of (TCat1 /

CwFbase
Σ) and CwFbase

Σ,Πrep
, the adjunction restricts to type-presented CwFs.

Corollary 5.2.5. The composite functor

(TCat1 /CwFtypres
Σ)

psh−→ CwFbase
Σ,Πrep

typres(−)−−−−−→ CwFtypres
Σ,Πrep

has a left adjoint.

For any SOGAT T , we write T fo for the GAT obtained by applying the left adjoint
of corollary 5.2.5 to T . The assignment T 7→ T fo is functorial, even though morphisms
of SOGATs and GATs are not required to preserve the base types.

Definition 5.2.6. The Σ-CwF AlgT of algebras of a SOGAT T is the Σ-CwF AlgT fo of
algebras of the GAT T fo. ⌟

We can use the universal property of T fo to compute characterizations of the compo-
nents of AlgT using (Σ, Πrep)-CwF morphisms out of T .

• A T -algebra consists of a category C with a terminal object and a (Σ, Πrep)-CwF
morphism C : T → pshSet(C).

• A T -algebra morphism from (C, C) to (D, D) consists of a functor F : C → D
preserving the terminal object and a dependent (Σ, Πrep)-CwF morphism F : T →
pshFunc(F)[C, D].

Since the data of a displayed term of Func is propositional, only the displayed
types of Func carry proof-relevant data, and all equalities between displayed terms
(or morphisms) of Func hold automatically. This simplifies the understanding of
pshFunc.

A dependent (Σ, Πrep)-CwF morphism F : T → pshFunc(F)[C, D] consists of:

– For every object X ∈ T , an internal presheaf FX in Func over the presheaves
CX and DX. This can be decomposed into a dependent function (a type of
Func)

FX : (Γ : C.Ob)→ CX(Γ)→ DX(F(Γ))

and equalities (a term of Func)

(f : C.Hom(∆, Γ))→ FX(Γ, x)[F(f)] = FX(∆, x[f]).

In other words, FX is a natural transformation from CX to F∗(DX).

– For every type (X ⊢ Y type) ∈ T , and internal dependent presheaf FY
over FX in Func, over the dependent presheaves CY and DY. This can be
understood as a dependent natural transformation from CY to DY over the
natural transformation FX.

– The rest of the data is propositional.

• A displayed T -algebra over (C, C) consists of a displayed category D over C
(with a displayed terminal object) and a dependent (Σ, Πrep)-CwF morphism
D : T → pshFam(D)[C].

CHAPTER 5. SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES 80

• A section of a displayed T -algebra (D, D) over (C, D) consists of a section S of D
and a dependent (Σ, Πrep)-CwF morphism D : T → pshSect(S)[C, D].

Example 5.2.7. TFamrep-algebras are exactly CwFs. Indeed, by the universal property of
TFamrep , a (Σ, Πrep)-CwF morphism C : TFamrep → pshSet(C) is determined by a closed
type (⊢ C(ty) type) ∈ pshSet(C) and a representable type (A : C(ty) ⊢ C(tm) typerep) ∈
pshSet(C). ⌟

5.3 Contextual algebras

The category of CwFs has a coreflective subcategory of contextual CwFs, defined in sec-
tion 3.1.2. In this section we generalize this to a notion of contextual algebras for any
SOGAT.

Let T be a SOGAT. Given any sort (∂A ⊢ A type) ∈ T , we may consider the extension

IA : FreeT (Γ ⊢ σ : ∂A)→ FreeT (Γ ⊢ a : A(σ)).

This is the generic extension of a T -algebra by a new element of the sort A, dependent
over an arbitrary context Γ.

Given any algebra C and (Γ ⊢ σ : ∂S) ∈ C, we write C[Γ ⊢ a : A(σ)] for the extension
of C by a new element of A over Γ. It can be computed as the pushout

FreeT (Γ ⊢ σ : ∂A) C

FreeT (Γ ⊢ a : A(σ)) C[Γ ⊢ a : A(σ)].

⟨Γ,σ⟩

IA

⟨Γ,σ,a⟩

We write IT for the set of all extensions {IA | (∂A ⊢ A type) ∈ T }, and IbaseT for the
subset of IT spanned by extensions corresponding to the base types. For example, IbaseTFamrep

consists of the CwF morphisms

Ity : FreeCwF(Γ ⊢)→ FreeCwF(Γ ⊢ A type),
Itm : FreeCwF(Γ ⊢ A type)→ FreeCwF(Γ ⊢ a : A)

that we have previously encountered.
We have previously defined such sets for GATs, see section 4.5. In particular we have

sets IT fo and IbaseT fo of extensions for T fo. We have inclusions IT ⊆ IT fo and IbaseT ⊆ IbaseT fo .
Indeed, the extension IA for a sort (∂A ⊢ A type) ∈ T coincides with the extension
associated to the sort (Γ : Ob, σ : ∂A(Γ) ⊢ A type) ∈ T fo. The only maps that are not
in the image of IbaseT ⊆ IbaseT fo are the extensions corresponding to the sorts of the theory
of categories, i.e. the generic extension of a T -algebra by a new context, morphism, or
equality between morphisms.

Definition 5.3.1. A T -algebra morphism is said to be contextual isomorphism if it is a
right map for the orthogonal factorization system generated by IbaseT . ⌟

The maps in the left class of that orthogonal factorization system are called left
contextual maps. A T -algebra C is said to be contextual when the map 0T → C is left
contextual.

The intuition behind this definition is that an algebra is contextual when its com-
ponents for the sorts in (IbaseT fo \IbaseT) are freely generated, i.e. when the objects and

CHAPTER 5. SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES 81

morphisms of its underlying category are freely generated (by the operations of T fo,
which include empty and extended contexts, empty and extended substitutions, etc.).

Any T -algebra has a contextual core cxl(C), which is the unique (up to isomorphism)
contextual T -algebra equipped with a contextual isomorphism cxl(C)→ C. The contex-
tual core functor cxl(−) is right adjoint to the embedding from contextual T -algebras into
T -algebras. This exhibits the category Algcxl

T of contextual T -algebras as a coreflective
subcategory of the category AlgT of T -algebras.

Definition 5.3.2. For any functor F : C → D, write psh
∼=
Func(F) for the subCwF of

pshFunc(F) spanned by the representable types and types whose underlying maps

fY : (Γ : C.Ob)→ (x : X1(Γ))→ Y1(Γ, x)→ Y2(Γ, fX(x))

are families of isomorphisms

fY : (Γ : C.Ob)→ (x : X1(Γ))→ Y1(Γ, x) ∼= Y2(Γ, fX(x)) ⌟

Proposition 5.3.3. A T -algebra morphism F : T → pshFunc(F)[C, D] is a contextual isomor-
phism if and only if it factors through

psh
∼=
Func(F) ↪→ pshFunc(F).

Proof. This is clear from unfolding the definitions.

Proposition 5.3.4. Let C : T → pshSet(C) be a T -algebra, and F : A ↪→ C a subcategory of C.
Assume that for every base representable sort (X ⊢ Y typerep) ∈ T , Γ ∈ A and x ∈ CX(Γ) we
have a chosen object Γ.Y(x) ∈ A such that F(Γ.Y(x)) = F(Γ).Y(x).

Then A can be equipped with the structure of a T -algebra and F can be equipped with the
structure of a T -algebra morphism, in such a way that F becomes a contextual isomorphism and
that the chosen objects Γ.Y(x) become the context extensions of A.

Proof. Consider the following pullback in (Σ, Πrep)-CwF:

G psh
∼=
Func(F)

T pshSet(C).

⌟
π2 π2

C

We equip G with the following choice of base types:

• A base non-representable type of G is a type lying over a base non-representable
type of T and such that the family of isomorphisms

fY : (Γ : A.Ob)→ (x : X1(Γ))→ Y1(Γ, x) ∼= Y2(Γ, fX(x))

is a family of identity maps

fY : (Γ : A.Ob)→ (x : X1(Γ))→ Y1(Γ, x) = Y2(Γ, fX(x)).

• A base representable type of G is a representable type lying over a base repre-
sentable type (X ⊢ Y typerep) of T , such that the family of isomorphisms

fY : (Γ : A.Ob)→ (x : X1(Γ))→ Y1(Γ, x) ∼= Y2(Γ, fX(x))

CHAPTER 5. SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES 82

is a family of identity maps

fY : (Γ : A.Ob)→ (x : X1(Γ))→ Y1(Γ, x) = Y2(Γ, fX(x)),

and such that the underlying context extensions in A are given by the chosen
objects Γ.Y(x).

It can be shown that the actions of π2 : G → T are bijective on base representable
types, base non-representable types and terms. Thus, since T is type-presented, the
projection π2 : G → T admits a unique section in CwFbase

Σ,Πrep
. This section can be

decomposed into:

• A T -algebra structure on A, namely the composition

T −→ G −→ psh
∼=
Func(F)

π1−→ pshSet(A).

• A T -algebra morphism structure on F which is a contextual isomorphism, given
by the composition

T −→ G −→ psh
∼=
Func(F) ↪→ pshFunc(F).

• Such that the context extensions of A coincide with the chosen object Γ.Y(x), due
to the fact that the section preserves the base representable types.

5.3.1 Explicit description of the contextual core

The contextual core of a CwF can be explicitly constructed using telescopes, indexed
by context length. For general SOGATs, we have to account for more general context
shapes.

Definition 5.3.5. The join of two representable types (∂A ⊢ A typerep) and (∂B ⊢
B typerep) is a representable type (∂(A ∗ B) ⊢ (A ∗ B) typerep), where

∂(A ∗ B) ≜ (σ : ∂A)× (τ : A(σ)→ ∂B),

(A ∗ B)(σ, τ) ≜ (a : A(σ))× (b : B(τ(a))).

Note that the representability of A is used in the definition of ∂(A ∗ B). ⌟

Proposition 5.3.6. The join operation is associative up to isomorphism, and the unit repre-
sentable type (1 ⊢ 1 typerep) is neutral up to isomorphism.

Proof. We check associativity, and leave the (left and right) neutrality of (1 ⊢ 1 typerep)
to the reader. Take representable types (∂A ⊢ A typerep), (∂C ⊢ C typerep) and (∂C ⊢
C typerep). Then we can compute

∂((A ∗ B) ∗ C) = ((σ : ∂A)× (τ : A(σ)→ ∂B))× (κ : (a : A(σ))× B(τ(a))→ ∂C),
((A ∗ B) ∗ C)((σ, τ), κ) = ((a : A(σ))× (b : B(τ(a))))× C(κ(a, b)),
∂(A ∗ (B ∗ C)) = (σ : ∂A)× ((a : A(σ))→ (τ : ∂B))× (κ : B(τ)→ ∂C),
(A ∗ (B ∗ C))(σ, (τ, κ)) = (a : A(σ))× ((b : B(τ(a)))× C(κ(a, b))).

Using the associativity of dependent sums and the distributivity of dependent products
over dependent sums, we see that the left-nested join ((A ∗ B) ∗ C) is isomorphic to the
right-nested join (A ∗ (B ∗ C)). (Left-nested and right-nested joins are two normal forms
for “polynomials”: left-nested joins are sums of products, while right-nested joins are
Horner normal forms.)

CHAPTER 5. SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES 83

Definition 5.3.7. A context shape is a list of base representable types. Any context shape
(A1, . . . , An) has a join (A1 ∗ · · · ∗ An), which we choose to be left-nested, since contexts
are extended on the right. ⌟

Example 5.3.8. The only representable sort of TFamrep is tm. Thus its context shapes are
in bijection with natural numbers, corresponding to context lengths. Their joins are the
representable types

(1 ⊢ 1 typerep),

(A1 : ty ⊢ tm(A1) typerep),

(A1 : ty, A2 : tm(A1)→ ty ⊢ (a1 : tm(A1))× (a2 : tm(A2(a1))) typerep),

. . .

They correspond to the telescopes of any length. Indeed, the contexts of these repre-
sentable types correspond to telescopes of types, and the representable types over these
contexts then correspond to telescopes of terms. ⌟

Proposition 5.3.9. The contextual core of a T -algebra C admits the following description:

• An object of cxl(C) is a pair (S, σ), where S is a context shape, and (1C ⊢ σ : ∂S) ∈ C.

• The fully faithful functor 1C .− : cxl(C)→ C sends (S, σ) to the object 1C .S(σ) ∈ C.

Proof. We use proposition 5.3.4 to equip cxl(C) with the structure of a T -algebra and
1C .− with the structure of a contextual isomorphism. We have to specify chosen context
extensions in cxl(C): for any (S, σ) ∈ cxl(C), base representable type (X ⊢ Y typerep) ∈ T
and element (1C .S(σ) ⊢ x : X) ∈ C, we pose (S, σ).Y(x) ≜ ((S ∗ Y), (σ, x)). We check
that 1C .(S ∗Y)(σ, x) = 1C .(a : S(σ)).Y(x(a)). Thus the assumptions of proposition 5.3.4
are satisfied.

It remains to prove that cxl(C) is contextual; this is analogous to the proof of propo-
sition 3.1.6. Take any right contextual map F : D → E and any T -algebra morphism
G : cxl(C) → E . We need to define a factorization of G through F. We define a functor
H : cxl(C)→ D by induction on the structure of context shapes.

H(1) = 1D,

H((S ∗ A)(σ, τ)) = H(S(σ)).A(F−1(G(τ))),
H(⟨⟩ : Γ→ 1) = ⟨⟩,

H(⟨ f , a⟩ : Γ→ (S ∗ A)(σ, τ)) =
〈

H(f), F−1(G(a))
〉

.

We can prove that the underlying functor of G factors as H followed by F.
We then consider the (Σ, Πrep)-CwF morphism

pshFunc(H)× pshFunc(F)→ pshFunc(G)× pshFunc(F)

induced by the Σ-CwF morphism (Func[C, D]×Func[D, E])→ (Func[C, E]×Func[D, E])
that sends (h, f) to (f ◦ h, f).

We can restrict it to a (Σ, Πrep)-CwF morphism

pshFunc(H)× psh
∼=
Func(F)→ pshFunc(G)× psh

∼=
Func(F).

CHAPTER 5. SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES 84

We can show that its actions on types, representable types and terms are all bijective.
Using the fact that T is type-presented, we obtain a factorization of

⟨G, F⟩ : pshFunc(G)× psh
∼=
Func(F)

through
pshFunc(H)× psh

∼=
Func(F)→ pshFunc(G)× psh

∼=
Func(F),

witnessing the fact that H extends to a morphism of T -algebra that is a factorization of
G through F, as needed.

5.3.2 The GAT of contextual algebras

In this section, we describe a GAT T cxl such that its category of algebras is equivalent
to the category of contextual algebras of T . Uemura (2019) has proven that for any
representable map category T , the category of finitely continuous functors T → Set is
equivalent to the (2, 1)-category of democratic models of T . Transposed to our setting,
for any SOGAT T , the GAT T cxl should be obtained obtained from T by forgetting its
representable types. Because a GAT has to be type-presented, we also need to ensure
that T cxl is type-presented.

One application of this description of T cxl will be a description of the contextual core
in functorial semantics: the contextual core of a T -algebra

C : T → pshSet(C)

will be the strictification of the composition

T cxl −→ T C−→ pshSet(C)
eval1−−→ Set,

where eval1 evaluates a presheaf at the terminal object 1C of C.
More generally, compositions of the form

T cxl ⌊−⌋−−→ T C−→ pshE (C)
eval1−−→ E

generalize the contextual core to T -algebras valued in other Σ-CwFs.

Definition 5.3.10. A base monomial type of a SOGAT T is a pair (A, B), where A is a
context shape and B is a base type. The corresponding type is the dependent product

(σ : ∂A, τ : A(σ)→ ∂B ⊢ ((a : A(σ))→ B(τ(a))) type) ∈ T . ⌟

Definition 5.3.11. We equip T with a new CwFbase
Σ structure, keeping the same underly-

ing CwFΣ-structure, and using the base monomial types as base types. We write T cxl for
the type-presented replacement of this Σ-CwF with base types. ⌟

Proposition 5.3.12. The Σ-CwF map ⌊−⌋ : T cxl → T is fully faithful, bijective on terms, and
split essentially surjective on objects and types.

Proof. As T cxl is a contextual CwF, the morphism T cxl → T is fully faithful if and only if
it is bijective on terms, and essentially surjective on objects if and only if it is essentially
surjective on types. By definition, T cxl is bijective on base types and bijective on terms.

Since T is type-presented as a (Σ, Πrep)-CwF, its types are obtained as the closure
of the base types under the operations of a (Σ, Πrep)-CwF. Because Π-types essentially

CHAPTER 5. SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES 85

distribute over dependent sums, any type of T is isomorphic to a iterated dependent
sum of iterated dependent products of base types. But we can show that any iterated
dependent product of base types (a “monomial” type) can be written as the substitution
of a base monomial type. This implies that the iterated dependent products of base types
are in the image of T cxl → T . Since T cxl → T preserves dependent sums, the iterated
dependent sums of iterated dependent products of base types are also in the image of
T cxl → T . Thus the types of T are all in the essential image of T cxl → T .

We will write ⌈−⌉ for chosen lifts of elements of T , so that for example ⌊⌈X⌉⌋ ∼= X
for X ∈ T .

Construction 5.3.13. For any Σ-CwF E with an internal category C with a terminal object
1C, we construct a Σ-CwF morphism

eval1 : pshE (C)→ E .

Moreover this construction is induced by a natural transformation between the GAT
morphisms TCwFΣ → TCwFΣ\TCat1

that induce

(E , C) 7→ pshE (C)

and
(E , C) 7→ E .

In particular, it is natural and it also acts on displayed Σ-CwFs with an internal category.
⌟

Construction. The actions of eval1 on objects, morphisms, type and terms just perform
the evaluation of some components at 1C. Because context extensions, 1 and Σ are
defined pointwise in pshE (C), they are strictly preserved by evaluation at 1C.

Definition 5.3.14. We define a GAT morphism T cxl → T fo as the composition

T cxl ⌊−⌋−−→ T
η−→ pshT fo(•) eval1−−→ T fo.

⌟

That GAT morphism induces an adjunction L ⊣ R between AlgT cxl and AlgT .

Proposition 5.3.15. The right adjoint R : AlgT → AlgT cxl admits the following explicit
description: for a T -algebra C classified by C : T → pshSet(C), the T cxl-algebra R(C) is
classified by

T cxl ⌊−⌋−−→ T C−→ pshSet(C)
eval1−−→ Set.

Proposition 5.3.16. By definition, R(C) is classified by

T cxl ⌊−⌋−−→ T
η−→ pshT fo(•) eval1−−→ T fo [C,C]−−→ Set.

By naturality of eval1, we can rewrite this to

T cxl ⌊−⌋−−→ T
η−→ pshT fo(•)

psh([C,C])−−−−−→ pshSet(C)
eval1−−→ Set,

where [C, C] : T fo → Set is the classifier of C seen as a T fo-algebra, and psh([C, C]) is the
action on morphisms of the functor psh(−).

CHAPTER 5. SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES 86

Then psh([C, C]) ◦ η is just the transpose of [C, C] in the adjunction (−)fo ⊣ psh(−), i.e.
C : T → pshSet(C).

Thus we can rewrite the above as

T cxl ⌊−⌋−−→ T C−→ pshSet(C)
eval1−−→ Set,

as needed.

Proposition 5.3.17. Let F : C → D be a morphism of T -algebras. If C is contextual and
R(F) : R(C)→ R(D) is an isomorphism, then F is a contextual isomorphism.

Proof. Let (X ⊢ A type) ∈ T be a sort. Take an object of C. Since C is contextual, this
object can be written 1C .S(σ) for some (∂S ⊢ S typerep) ∈ T and (1C ⊢ σ : ∂S) ∈ C. Also
take an element (1C .S(σ) ⊢ x : X) ∈ C.

We want to prove that the action of F on elements of A over 1.S(σ) and x is an
isomorphism. But the action of F on A at 1C .S(σ) is equivalently the action of F on

(σ : ∂S ⊢ Πs:S(σ)A(x[s]) type)

at 1C .
The action of F on a sort at 1C is exactly the action of R(F) on that sort. Therefore, the

action of F on elements of A is bijective. Because this holds for any sort, F is a contextual
isomorphism, as needed.

Proposition 5.3.18. For every M : AlgT cxl , the unit ηM : M→ R(L(M)) is an isomorphism
and L(M) is contextual.

Proof. We prove that for every M : AlgT cxl , we can construct a universal arrow ηM :
M→ R(LM), that this universal arrow is an isomorphism and that LM is contextual.

Take some M : AlgT cxl . Thanks to proposition 5.3.12, we can interpret the following
notation: For Γ a representable sort of T and A a sort over T over Γ, we write

(γ : Γ ⊢ x(γ) : A(γ)) ∈M

to mean that (x : ⌈Π(Γ, A)⌉) ∈M.
We define a category LM:

• An object of LM is a pair (S, σ) where S is a context shape and (σ : ⌈∂S⌉) ∈M.

• A morphism from (T, τ) to (S, σ) is an element (t : ⌈T⌉(τ) ⊢ f (t) : ⌈S⌉(σ)) ∈M.
Identities and compositions are defined in the expected way.

We equip LM with the structure of a T -algebra by constructing a pseudo-morphism
L : T → pshSet(LM) (which we can then strictify).

• An element of L(X) at (S, σ) is an element (γ : ⌈S⌉(σ) ⊢ x(γ) : ⌈X⌉) ∈ M. The
functorial action is precomposition with (t : ⌈T⌉(τ) ⊢ f (t) : ⌈S⌉(σ)) ∈M.

• The action of L on a morphism (f : X → Y) ∈ T is postcomposition with
⌈ f ⌉ : ⌈X⌉ → ⌈Y⌉.

• An element of L(A) at (S, σ) over an element x of L(X) is an element (γ : ⌈S⌉(σ) ⊢
a(γ) : ⌈A⌉(x(γ))) ∈M.

CHAPTER 5. SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES 87

• The action of L on a term (X ⊢ a : A) ∈ T is the dependent natural transformation
that takes (γ : ⌈S⌉(σ) ⊢ x(γ) : ⌈X⌉) ∈M and constructs (γ : ⌈S⌉(σ) ⊢ ⌈a⌉(x(γ)) :
⌈A⌉(x(γ))) ∈M.

• If A is a representable sort, then L(A) is (locally) representable in pshSet(LM).

• The preservation of Π-types boils down to a bijective correspondence between
elements

(γ : ⌈S⌉(σ), a : ⌈A⌉(x(γ)) ⊢ b(γ, a) : ⌈B⌉(x(γ), a)) ∈M

and
(γ : ⌈S⌉(σ) ⊢ f (γ) : ⌈Π(A, B)⌉(x(γ))) ∈M.

It follows from the characterization of proposition 5.3.9 that LM is contextual.
We then define a morphism ηM : M → R(LM). It suffices to define a natural

transformation from M to eval1 ◦ LM ◦ ⌊−⌋ as functors from T cxl to Set.
Given x : MX, we need to construct (⌈1⌉ ⊢ ηM(x) : ⌈⌊X⌋⌉) ∈ M, i.e. (ηM(x) :

⌈Π(⌊⌈1⌉⌋, ⌈⌊X⌋⌉)⌉) ∈M. But ⌈Π(⌊⌈1⌉⌋, ⌈⌊X⌋⌉)⌉ is isomorphic to X, so we can simply
transport x over that isomorphism. Naturality is straightforward. Because the com-
ponents ηM are defined by transport over some isomorphisms, they are themselves
isomorphisms; hence ηM is an isomorphism.

Finally, we can prove that the arrow ηM is universal. Given another arrow α : M→
R(C), we have to prove that there exists a unique F : LM → C such that α = R(F) ◦ ηM.
Because the components of LM are defined using some components of M, we can apply
α to these components when defining F. We omit the details.

Theorem 5.3.19. The coreflective subcategory of AlgT determined by the adjunction (L ⊣ R)
is the same as the coreflective subcategory of contextual T -algebras.

Proof. It suffices to prove that for any T -algebra C, the counit

ε : L(R(C))→ C

exhibits L(R(C)) as the contextual core of C.
We have already proven in proposition 5.3.18 that L(R(C)) is contextual. Because

the adjunction is coreflective, we know that R(ε) is an isomorphism. But, by proposi-
tion 5.3.17, this means that ε is a contextual isomorphism. Thus L(R(C)) is the contextual
core of C, as needed.

Chapter 6

Relative induction principles

The goal of this chapter is to explain how to prove properties of the initial algebras of
SOGATs, in particular properties of the syntax of type theory. Some of the content of
this chapter is based on work which I did together with Ambrus Kaposi and Christian
Sattler (2023). The relative induction principles presented in this thesis are generalized to
arbitrary SOGATs, instead of a single type theory. I also give applications of the relative
induction principles which were not present in the paper.

Because the initial algebra of a SOGAT T is the initial algebra of the GAT T fo, one
has an induction principle over the initial algebra 0T : any displayed T fo-algebra over
0T admits a section. Properties of the initial algebra can then be proven by induction,
i.e. by obtaining sections into carefully constructed displayed T fo-algebras. Directly
constructing all components of these displayed T fo-algebras is feasible but impractical.

Instead, we want to construct them by composing multiple smaller constructions.
Having such constructions is comparable to having alternative induction principles, or
to general methods that can be used to suitably strengthen induction hypotheses. Using
induction principles requires providing “motives” (the induction predicates, which
are the sorts of a displayed model) and “methods” (the operations of the displayed
model), subject to some equations. For the syntax of type theory considered as the initial
T fo-algebra, these equations include the substitution laws: all methods must commute
with substitution. Proving these substitution laws by hand is very tedious, so we want
alternative motives and methods that don’t visibly interact with substitutions.

We show how to prove metatheorems using “relative induction principles”. This
combines two ideas:

• A sconing construction can be used to prove properties of closed components of an
initial algebra 0T . By closed components, we mean for instance the sets 0T .Ty(1)
and 0T .Tm(1, A) of closed types and terms. The scone, or Sierpinski cone, of a
category C with a terminal object is the displayed category SconeC over C whose
displayed objects over Γ are families Γ′ : C(1, Γ)→ Set.

Suppose that we want to prove a property of closed types and terms. We may have
the “motives” for induction on closed types and terms.

PTy : 0T .Ty(1)→ Set,
PTm : ∀A→ PTy(A)→ 0T .Tm(1, A)→ Set,

and may want to construct functions STy : ∀A → PTy(A) and STm : ∀a →
PTm(STy(A), a). In order to use the initiality of the syntax, we need to strengthen

88

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 89

these motives to arbitrary types and terms. The sconing construction explains
how to do this: we need to quantify over all closing substitutions γ : 0T (1, Γ) and
consider the closed types A[γ] and closed terms a[γ]. The strengthened motives
are as follows:

P′Ty : (Γ′ : 0T (1, Γ)→ Set)→ (A : 0T .Ty(Γ))→ Set,

P′Ty(Γ
′, A) = ∀(γ : 0T (1, Γ))(γ′ : Γ′(γ))→ PTy(A[γ]),

P′Tm : (Γ′ : 0T (1, Γ)→ Set)(A′ : P′Ty(Γ
′, A))→ (a : 0T .Ty(Γ, A))→ Set,

P′Ty(Γ
′, A′, a) = ∀(γ : 0T (1, Γ))(γ′ : Γ′(γ))→ PTm(A′(γ′), a[γ]).

In general, the sconing construction equips Scone0T with the structure of a dis-
played T -algebra over 0T , starting from the data of a displayed “higher-order
model” over 0T . A displayed higher-order model can be seen as the motives and
methods for induction over the closed components of 0T .

• When proving properties of the open components of an initial algebra S , one often
has access to a functor F : C → S . This functor specifies that the result of the
induction should be available in the image of F, naturally in C. This functor is
called “figure shape” by Sterling (2022). This is also closely related to the “worlds”
of Twelf (Pfenning and Schürmann 1999) or the “schemas” of Beluga (Pientka
2010). For example, the functor 1S → S that selects the terminal context is used
for canonicity; since canonicity is a statement about terms in the empty context.
The functor Ren(S)→ S is used for normalization; due to the fact that normaliza-
tion can be performed over arbitrary contexts, but normal forms and the overall
normalization procedure is only stable under renamings.

In this situation, we construct a new T -algebra SF, which relativizes S with re-
spect to F. It is defined in such a way that closed components of SF correspond
bijectively to open components of S over the image of F. At a first glance, this
seems impossible. What makes this possible is that SF is not defined as an external
T -algebra, but as an internal T -algebra in Psh(C), i.e. an element of AlgT (Psh(C)).
By proposition 4.3.11, this corresponds to a functor S [F(−)] : Cop → AlgT (a
“presheaf of T -algebras”). For any Γ ∈ C, the closed components of the T -algebra
S [F(Γ)] will coincide with the components of S over F(Γ); we have a natural
isomorphism

S [F(Γ)].Ty(1) ∼= S .Ty(F(Γ)).

When working in the internal language to Psh(C), the quantification over Γ is im-
plicit; the left hand side of the above natural isomorphism is just written SF.Ty(1),
and SF behaves like an ordinary T -algebra.

A relative induction principle for S with respect to F is then an induction principle
for SF (an universal property for SF in the category of internal T -algebras in
Psh(C), or equivalently for S [F(−)] in the category of functors Cop → AlgT).
There is also a version of the relative induction principle in the internal language
of Psh(C). Once we have an induction principle for SF, we can prove properties of
its closed components using sconing, internally to Psh(C). Because of how SF is
defined, this yields proofs of properties of open components of S.

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 90

6.1 Contextualization

SOGATs are related to both first-order and higher-order notions of theories. A SOGAT T
can be turned to a first-order GAT either through the reduction of section 5.2, or by going
through the forgetful functor CwFΣ,Πrep → CwFΣ (which gives, up to type-presented
replacement, the GAT T cxl of contextual algebras). A SOGAT can also be seen as a
higher-order theory by going though the left adjoint functor CwFΣ,Πrep → CwFΣ,Π. This
provides the following notion of higher-order model:

Definition 6.1.1. A higher-order model of T is a (Σ, Πrep)-CwF morphism T → Set,
where the (Σ, Πrep)-structure of Set is induced from its (Σ, Π)-structure. ⌟

We call them higher-order models rather than higher-order algebras, because they
don’t assemble into a category, or at least not into a category of algebras and homo-
morphisms; there is a notion of isomorphism of higher-order models, but no notion of
directed morphism.

Example 6.1.2. A higher-order model of TFamrep consists of a set ty : Set and a family
tm : ty→ Set. Note that this can be seen as a universe (with tm as its decoding function),
although it is not equipped with any additional structure.

A higher-order model of TΣ is a family closed under 1- and Σ- types, i.e. with

1 : ty,
tm(1) ∼= {⋆},
Σ : (A : ty)(B : tm(A)→ ty)→ ty,
tm(Σ(A, B)) ∼= (a : tm(A))× tm(B(a)). ⌟

Their main purpose is to serve as intermediate steps in the constructions of “first-
order” algebras. The T -algebras have an underlying category of contexts, while the
higher-order models do not have any explicit notion of context. Because the following
construction adds explicit contexts to a higher-order model, we call it the contextual-
ization of a higher-order model. There actually are multiple variants of the contextu-
alization: the telescopic contextualization produces a contextual algebra, whereas the
Set-contextualization produces an algebra whose base category is the category of sets.

Remark 6.1.3. The name contextualization can be confusing, as it is not directly related to
contextual CwFs and the operation of taking the contextual core. Perhaps a better name
for this operation can be found in the future, but I have not found one yet, so I decided
to stick to the name that was used in our paper (Bocquet, Kaposi, and Sattler 2023).

Candidates for alternative names include first-order-ification, algebraization. ⌟

Construction 6.1.4. Let M : T → Set be a higher-order model. The telescopic contextu-
alization of M is the contextual T -algebra CxlTele(M) specified by the composite Σ-CwF
morphism

T cxl ∼−→ T M−→ Set. ⌟

Construction 6.1.5. Let M : T → Set be a higher-order model. The Set-contextualization
of M is the T -algebra CxlSet(M) specified by the strictification of the composite (Σ, Πrep)-
CwF pseudo-morphism

T M−→ Set よ−→ Psh(Set). ⌟

Proposition 6.1.6. The telescopic contextualization is the contextual core of the Set-contextualization:

CxlTele(M) ∼= cxl(CxlSet(M)).

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 91

Proof. By theorem 5.3.19, the contextual core of CxlSet(M) is classified by the strictifica-
tion of the composite Σ-CwF morphism

T cxl ∼−→ T M−→ Set よ−→ Psh(Set)
eval1−−→ Set.

But eval1 ◦よ ∼= Id, so this is the Σ-CwF morphism classifying the telescopic contex-
tualization.

The telescopic contextualization can be generalized by looking at

T cxl ∼−→ T M−→ E
E(1E ,−)−−−−→ Set

for any (Σ, Π)-CwF E . We won’t need to use this generalization; in cases where it could
possibly be used, we will rather use Construction 6.1.5 in the internal language of E . This
assumes that the internal language of E is rich enough, typically E will be a presheaf
topos. Note however that when E = pshSet(C) and M is a T -algebra, then the telescopic
contextualization of M is the contextual core; even though the contextualization and the
contextual core are different constructions, they are not completely unrelated.

6.1.1 Displayed contextualization

We are interested in generalizing the contextualization operation so as to generate
displayed T -algebras; the goal is to obtain displayed T -algebras over the initial T -
algebra, so as to use its universal property. In particular, we need a displayed variant of
the notion of higher-order model. Intuitively, if a higher-order model is a morphism T →
Set, a displayed higher-order model should be a morphism T → Fam. However, we also
need to consider the base model, which is determined by a functor M : T → pshSet(M).
Indeed, a displayed higher-order model is not displayed over a base higher-order model,
but over a base (first-order) T -algebra instead.

This leads to the consideration of the pullback

Fam[eval1] Fam

T pshSet(M) Set

⌟

M eval1

The category Fam has a (Σ, Πrep)-CwF structure, but it is not preserved by the pseudo-
morphism eval1, so the pullback is not automatically a (Σ, Πrep)-CwF. However the fact
that eval1 preserves Π-types laxly is sufficient to equip the pullback with a (Σ, Πrep)-CwF
structure.

Construction 6.1.7. Let C be a (Σ, Πrep)-CwF and F : C → Set be a pseudo-morphism of
Σ-CwFs. Then we define a displayed (Σ, Πrep)-CwF Fam[F] over C.

• The underlying displayed category of Fam[F] is the restriction of Fam over F.

• A displayed type over (Γ ⊢ A type) ∈ C and Γ′ : F(Γ)→ Set is a family

A′ : ∀(γ : F(Γ))(γ′ : Γ′(γ))→ F(A)(γ)→ Set.

The displayed representable types are defined in the same way.

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 92

• A displayed term a′ of type A′ over (Γ ⊢ a : A) ∈ C is a family

a′ : ∀(γ : F(Γ))(γ′ : Γ′(γ))→ A′(γ, γ′, F(a)(γ)).

• The displayed empty context is the family

⋄′ = λ_ 7→ {⋆}.

The extension of a displayed context Γ′ by a displayed type A′ is the family

(Γ′.A′) = λ(γ, a) 7→ (γ′ : Γ′(γ))× A′(γ′, a).

Here the quantification over (γ, a) is justified by the fact that F preserves context
extensions up to isomorphism.

• The displayed 1-type is the family

1′ = λ__ 7→ {⋆}.

Given displayed types A′ over a displayed context Γ′ and B′ over the displayed
context Γ′.A′, the displayed Σ-type over Σ(A, B) is the family

Σ′(A′, B′) = λγγ′(a, b) 7→ (a′ : A′(γ′, a))× (b′ : B′((γ′, a′), b)).

Here the quantification over (a, b) is justified by the fact that F preserves Σ-types
up to isomorphism.

• Given a displayed representable type A′ over a displayed context Γ′ and a dis-
played type B′ over the displayed context Γ′.A′, the displayed Π-type over Π(A, B)
is the family

Π′(A′, B′) = λγγ′ f 7→ (∀(a : F(A)(γ))(a′ : A′(γ′, a))→ B′((γ′, a′), F(app)(γ, f , a))).

Here F(app) : ∀γ→ F(Π(A, B))(γ)→ (a : F(A)(γ))→ F(B)(γ, a) witnesses the
lax preservation of Π-types by the pseudo-morphism F. ⌟

We will be focusing on the instance Fam[eval1] of this construction for the pseudo-
morphism

eval1 : pshSet(M)→ Set.

Definition 6.1.8. Let M : T → pshSet(M) be a base T -algebra.
A displayed higher-order model of T is a dependent (Σ, Πrep)-CwF morphism

T → Fam[eval1][M]. ⌟

Let M• : T → Fam[eval1M][M] be a displayed higher-order model.

• For every object X ∈ T , we have a family

M•
X : MX(1M)→ Set.

• For every type (X ⊢ A type) ∈ T , we have a family

M•
A : (x : MX(1M))→M•

X(x)→MA(1M, x)→ Set.

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 93

• In the case of Π-types, we have

M•
Π(A,B)(x, x′, f) = (∀(a : MA(1M, x)) (a′ : M•

A(x, x′, a))→M•
B((x, a), (x′, a′), f (a)).

• For every term (X ⊢ a : A) ∈ T , we have a map

M•
a : (x : MX(1M))(x′ : M•

X(x))→M•
A(x, x′, Ma(1M, x)).

Example 6.1.9. We can compute the notion of displayed higher-order model over the
SOGAT TΣ of a representable family with Σ-types. Let M be a TΣ-algebra. A displayed
higher-order model over M consists of the following components:

ty• : M.Ty(1M)→ Set, (Displayed types)
tm• : ∀A→ ty•(A)→M.Tm(1M, A)→ Set, (Displayed terms)
Σ• : ∀A B→ (A• : ty•(A))→ (∀a (a• : tm•(A•, a))→ ty•(B[a]))→ ty•(Σ(A, B)),
pair• : ∀A B A• B• a b (a• : tm•(A•, a)) (b• : tm•(B•(a, a•), b))
→ tm•(Σ•(A•, B•), pair(a, b)),

fst• : ∀A B A• B• p (p• : tm•(Σ•(A•, B•), p))→ tm•(A•, fst(p)),
snd• : ∀A B A• B• p (p• : tm•(Σ•(A•, B•), p))→ tm•(B•(fst(p), fst•(p)), snd(p)),
− : fst•(pair•(a•, b•)) = a•,
− : snd•(pair•(a•, b•)) = b•,
− : pair•(fst•(p•), snd•(p•)) = p•.

Computing for example the specification of Σ• involves interpreting

(A : ty, B : tm(A)→ ty ⊢ Σ(A, B) : ty) ∈ TΣ

in Fam[eval1M][M]. In particular, the interpretation of the Π-type tm(A)→ ty introduce
quantification on (a : M.Tm(1M, A)) and (a• : tm•(A•, a)). ⌟

Definition 6.1.10. Given a displayed higher-order model M•, the telescopic displayed
contextualization CxlTele(M

•) is the displayed contextual T -algebra over the contextual
core cxl(M) determined by the composite map

T cxl −→ T M•
−→ Fam[eval1] −→ Fam. ⌟

The definition of the Scone-contextualization, which is the displayed variant of the
Set-contextualization, is unfortunately more complicated than its non-displayed counter-
part. In applications, it is possible to only use the telescopic displayed contextualization.
For computations with concrete displayed higher-order models, it is however easier to
compute the Scone-contextualization.

The following construction will play the same role as the Yoneda embeddingよ :
Set→ Psh(Set) in the definition of the Set-contextualization.

Construction 6.1.11. We construct a (Σ, Πrep)-CwF pseudo-morphism

Y : Fam[eval1]→ pshFam(SconeM)

that lies over id : pshSet(M)→ pshSet(M). ⌟

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 94

Proof. When M = 1Cat, the displayed category Fam[eval1] becomes Set, the displayed
category pshFam(SconeM) becomes Psh(Set), and the pseudo-morphism Y should re-
duce to the Yoneda embedding.

An object X′ : X(1M) → Set is sent to the following dependent presheaf (object of
pshFam(SconeM) over X)

YX′(Γ, Γ′, x : X(Γ)) = ∀(γ : M(1, Γ)) (γ′ : Γ′(γ))→ X′(x[γ]).

The action on a morphism (f : ∆ → Γ, f ′ : ∀δ → ∆′(δ) → Γ′(f ◦ δ)) is precomposition
with f and f ′.

A morphism (α : X ⇒ Y, α′ : X′(x)→ Y′(α1M(x))) is sent to the dependent natural
transformation

Yα′(Γ, Γ′, x : X(Γ), x′ : YX′(Γ, Γ′, x)) : YY′(Γ, Γ′, α1M(x)),
Yα′(Γ, Γ′, x : X(Γ), x′ : YX′(Γ, Γ′, x))

= λγ γ′ 7→ α′(x(γ, γ′)),

i.e. post composition with α′. Naturality follows from the commutation of precomposi-
tion with postcomposition.

A type A′ : (x : X(1M))(x′ : X′(x)) → A(1M, x) → Set is sent to the following
dependent presheaf (type of pshFam(SconeM) over YX′ and A)

YA′(Γ, Γ′, x : X(Γ), x′ : YX′(Γ, Γ′, x), a : A(Γ, x))
= ∀(γ : M(1, Γ)) (γ′ : Γ′(γ))→ A′(x[γ], x′(γ, γ′), a[γ]).

We check the weak preservation of extended contexts: we have natural isomorphisms

YX′.A′(Γ, Γ′, x : X(Γ), a : A(Γ, x))
= ∀(γ : M(1, Γ)) (γ′ : Γ′(γ))→ (x′ : X′(x[γ]))× (a′ : A′(x′, a[γ]))
∼= (x′ : ∀γ γ′ → X′(x[γ]))× (a′ : ∀γ γ′ → A′(x′(γ, γ′, a[γ])))
∼= (x′ : YX′(Γ, Γ′, x))× (a′ : YA′(Γ, Γ′, x, x′, a)).

Finally we can check the weak preservation of Π-types: we have

YΠ(A′,B′)(Γ, Γ′, x : X(Γ), x′ : YX′(Γ, Γ′, x), f : (Π(A, B))(Γ, x))

= ∀γ γ′ → ∀(a : C.Tm(1, A[γ])) (a′ : A′(γ′, a))→ B′((γ′, a′), app(f [γ], a)),
∼= ∀(γ, a) (γ′, a′)→ B′((γ′, a′), app(f [γ], a)).

To conclude, observe that Π-types in pshFam(SconeM) are computed as described in Con-
struction 5.2.2.

(Π(YA′ , YB′))(Γ, Γ′, x, x′, f),
= YB′((Γ.A), (Γ′.YA′), x[pA], (λ(γ′, a′) 7→ x′(γ′)), app(f , qA)),
∼= ∀(γ, a) (γ′, a′)→ B′((γ′, a′), app(f , qA)[⟨γ, a⟩]),
∼= ∀(γ, a) (γ′, a′)→ B′((γ′, a′), app(f [γ], a)).

Definition 6.1.12. Given a displayed higher-order model M•, the Scone-contextualization
cxl(M•) is the displayed T -algebra over M determined by the composite map

T M•
−→ Fam[eval1M]

Y−→ pshFam(SconeM). ⌟

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 95

Lemma 6.1.13. The contextual core of the Scone-contextualization is isomorphic to the telescopic
displayed contextualization.

Proof. The contextual core of the Scone-contextualization is the contextual model classi-
fied by the following composite map

T cxl −→ T M•
−→ Fam[eval1M]

Y−→ pshFam(SconeM)
eval1−−→ Fam.

But an easy computation shows that the composition

Fam[eval1M]
Y−→ pshFam(SconeM)

eval1−−→ Fam

is naturally isomorphic to the projection Fam[eval1M]→ Fam.
So that map is also the one classifying the telescopic displayed contextualization.

Example 6.1.14. We compute the components of the Scone-contextualization CxlScone(M
•)

of a displayed higher-order model M• of TΣ, with components as in example 6.1.9.
It is a displayed TΣ-algebra, with SconeM as the base displayed category.

• A displayed type over (Γ : M, Γ′ : M(1, Γ)→ Set) and A : M.Ty(Γ) is

A′ : ∀(γ : M(1, Γ)) (γ′ : Γ′(γ))→ Ty•(A[γ]).

The extension of Γ′ by the type A′ is

(Γ′.A′) = λ⟨γ, a⟩ 7→ (γ′ : Γ′(γ))× (a′ : Tm•(A′(γ, γ′), a[γ])).

The substitution operation is precomposition with

f ′ : (δ′ : ∆′(δ))→ Γ′(f ◦ δ).

• A displayed term over (Γ : M, Γ′ : M(1, Γ) → Set) and a : M.Tm(Γ, A), of type
A′, is

a′ : ∀(γ : M(1, Γ)) (γ′ : Γ′(γ))→ Tm•(A′(γ, γ′), a[γ]).

• The operations of the Σ-type structure are as follows:

Σ′(A′, B′) = λγ γ′ 7→ Σ•(A′(γ, γ′), λa a′ 7→ B′(⟨γ, a⟩, (γ′, a′))),
pair′(a′, b′) = λγ γ′ 7→ pair•(a′(γ, γ′), b′(γ, γ′)),
fst′(p′) = λγ γ′ 7→ fst•(p′(γ, γ′)),
snd′(p′) = λγ γ′ 7→ snd•(p′(γ, γ′)).

The most interesting case is the binder Σ: because B′ is in an extended context, it
depends on both γ′ : Γ′(γ) and a′ : Tm•(A′(γ, γ′), a[γ]) for some a. But the second
argument of Σ• quantifies exactly on the additional data a and a′.

• The equations from the SOGAT (such as fst(pair(x, y)) = x) all follow pointwise
from the corresponding equations in the higher-order model.

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 96

• The naturality conditions are all essentially associativity of function composition,
e.g.

fst′(p′)[f ′]
= λδ δ′ 7→ fst•(p′(f ◦ δ, f ′(δ′))),
= fst′(p′[f ′]).

Σ′(A′, B′)[f ′]
= λδ δ′ 7→ Σ•(A′(f ◦ δ, f ′(δ′)), λa a′ 7→ B′(⟨ f ◦ δ, a⟩, (f ′(γ′), a′))),
= Σ′(A′[f ′], B′[λ(γ′, a′) 7→ (f (γ′), a′)]). ⌟

Remark 6.1.15. A displayed higher-order model over the terminal model is the same
as a non-displayed higher-order model. In that case, the displayed and non-displayed
contextualizations are equivalent. ⌟

6.2 Application: canonicity

As a first example of the use of displayed higher-order models and displayed contextu-
alizations, we use these tools to prove canonicity for MLTT.

Definition 6.2.1. We say that a TMLTT-algebra C satisfies canonicity if for every closed
boolean term (⊢ b : Bool) ∈ C, we have either b = true or b = false. ⌟

Remark 6.2.2. Let TBool be the GAT of bipointed sets, so that the initial TBool-algebra is
the set {true, false} of booleans. There is a GAT morphism B : TBool → T fo

MLTT that selects
the sort tm(⋄,Bool) of closed boolean terms and the closed boolean terms true and false.
Then canonicity for C : AlgTMLTT

says that the TBool-algebra morphism 0Bool → B∗(C) is
a trivial fibration of TBool-algebras.

This means that canonicity can be seen as an embedding result: the theory of booleans
can faithfully be embedded into MLTT. The same question can be asked for other GAT
morphisms F : T1 → T2. When is a T1-algebra morphism f : M → F∗(N) a trivial
fibration? In particular, the morphisms 0T1 → F∗(0T2) and more generally the units
ηM : M→ F∗(F!(M)) are interesting. ⌟

Remark 6.2.3. There are multiple slightly different statements of canonicity, e.g. we could
also include that true ̸= false.

Canonicity is often used to justify that a type theory has computational content,
although it has meaning even in a classical metatheory: it says that every closed boolean
is standard in the syntax of type theory. ⌟

6.2.1 The canonicity higher-order model

We construct a displayed higher-order model Can of TMLTT over the initial model 0MLTT.

• A displayed n-small type over a closed type A : 0MLTT.Tyn(1) is a n-small canonic-
ity family, that is a family

A• : 0MLTT.Tm(1, A)→ Setn.

The family A• is also called logical predicate (or computability/reducibility predi-
cate, or computability family to emphasize the fact that it is a family of sets rather
than a family of propositions).

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 97

An element of A•(a) should be seen as a witness for the computability of the closed
term a. In particular, we will need to know that an element of Bool•(b) ensures
that the closed boolean term b is canonical. Because we are defining a displayed
higher-order model, the logical predicate A• will be computed by induction on the
structure of the type A.

• A displayed term of a closed term a : 0MLTT.Tm(1, A) is an element

a• : A•(a).

Lifting The definition of the displayed lifting operation is essentially forced by the
required isomorphism Tm•(Lift•(A•), a) ∼= Tm•(A•, lower(a)):

Lift•(A•) = λa 7→ A•(lower(a)).

Universes The definition of the displayed universe U•n is essentially forced by the
required isomorphism Tm•(U•n , A) ∼= Ty•(El(A)): an element of U•n (A) is a n-small
canonicity family over the type El(A).

1-type The definition of the displayed 1-type is essentially forced by the required
isomorphism Tm•(1•, x) ∼= {⋆}:

1• = λx 7→ {⋆}.

Σ-types The definition of the displayed Σ-types is essentially forced by the required
isomorphism Tm•(Σ•(A•, B•), p) ∼= (a• : Tm•(A•, fst(p)))× Tm•(B•(a•), snd(b)):

Σ•(A•, B•) = λp 7→ (a• : A•(fst(p)))× B•(snd(p)).

Π-types The definition of the displayed Π-types is essentially forced by the required
isomorphism Tm•(Π•(A•, B•), f) ∼= (∀a(a• : Tm•(A•, a))→ Tm•(B•(a•), app(f , a))):

Π•(A•, B•) = λ f 7→ (∀a(a• : A•(a))→ B•(a•)(app(f , a))).

Empty type The family Empty• : 0MLTT.Tm(1,Empty)→ Set is the empty family:

Empty•(x) = {}.

Boolean type The family Bool• : 0MLTT.Tm(1,Bool)→ Set is inductively generated by
constructors:

true• : Bool•(true),
false• : Bool•(false).

We have an isomorphism Bool•(b) ∼= (b = true) + (b = false).
The displayed eliminator for booleans is defined by induction over that family:

elimBool•(P•, t•, f •, true•) = t•,
elimBool•(P•, t•, f •, false•) = f •.

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 98

Identity types For any displayed type A• and displayed term x•, The family

Id•(a•, x•,−) : ∀y (y• : A•(y))→ 0MLTT.Tm(1, Id(A, x, y))→ Set

is inductively generated by a constructor

refl• : Id•(A•, x•, x•, refl).

As with booleans, the displayed eliminator for identity types is defined by induction
over that family.

W-types For any displayed type A• and displayed dependent type B•, the family
W•(A•, B•) : 0MLTT.Tm(1, W(A, B))→ Set is inductively generated by a single construc-
tor

sup• : ∀a f (a• : A•(a))(f • : ∀b b• →W•(A•, B•, app(f , b)))
→W•(A•, B•, sup(a, f)).

As with booleans, the displayed eliminator for W-types is defined by induction over
that family.

6.2.2 The canonicity result

We can construct the displayed contextualization Cxl(Can) (either the telescopic contex-
tualization or the Scone-contextualization). It is displayed over 0MLTT. By initiality of
0MLTT, we have a section J−K : 0MLTT → Cxl(Can).

Theorem 6.2.4. The initial algebra 0MLTT satisfies canonicity.

Proof. Let (⊢ b : Bool) ∈ 0MLTT be a closed boolean term. Applying the section J−K, we
have JbK : Can.Tm•(JBoolK, b). By definition of Can, this means that JbK : Bool•(b), i.e.
that b is either true or false.

Using the fact that J−K preserves the operations of a TMLTT-algebra, we can compute
its action on closed terms. For any Γ ∈ 0MLTT, we can see JΓK : 0MLTT(1, Γ) → Set as a
family of evaluation environments. an element γ• : JΓK(γ) contains a mapping from
every variable a in Γ to a semantic value in Can.Tm•(JAK(γ•), a), where γ sends the
variable a to a : 0MLTT.Tm(1, A). Then for any open term a and evaluation environment
γ•, JaK(γ•) is a semantic value over a.

The following example demonstrates how to compute the action of J−K on a small
term.

Japp(lam(λb 7→ elimBool(false, true, b)), true)K
= Jlam(λb 7→ elimBool(false, true, b))K(JtrueK) (Preservation of app)
= JelimBool(false, true, b)K[b 7→ JtrueK] (Preservation of lam)
= elimBool•(JfalseK, JtrueK, JbK[b 7→ JtrueK]) (Preservation of elimBool)
= elimBool•(JfalseK, JtrueK, JtrueK) (Preservation of variables)
= elimBool•(false•, true•, true•) (Preservation of true and false)
= false•.

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 99

6.3 Relative induction principles

Now that we know how to prove properties of closed terms by induction, we turn our
attention to relative induction principles, which will allow for the use of the displayed
contextualization even when proving properties of open terms.

Fix a SOGAT T .

Definition 6.3.1. For any T -algebra C, we define a functor C[−] : Cop → AlgT which
sends Γ ∈ C to the free extension C[γ : 1 → Γ] of C by a new morphism γ : 1 → Γ.
We also denote this free extension by C[γ : Γ], or just C[Γ]. For any other T -algebra
D, algebra morphism F : C → D and morphism γ : 1D → F(Γ), there exists a unique
morphism G : C[γ : Γ]→ D such that G ◦ i = F and G(γ) = γ

The action of this functor on f : ∆ → Γ is the morphism C[f] : C[γ : Γ] → C[δ : ∆]
that sends γ : 1→ Γ to (f ◦ γ) : 1→ ∆. ⌟

For any T -algebra D and functor F : C → D, we write D[F(−)] for the composition
of D[−] : Dop → AlgT with F : Cop → Dop.

Proposition 6.3.2. The construction of C[−] : Cop → AlgT has an action on T -algebra
morphisms: for any T -algebra morphism F : C → D, there is a natural transformation

F[−] : C[−]⇒ D[F(−)],

functorially in F.

Proof. Take a morphism F : C → D. Given an object Γ ∈ C,

F[Γ] : C[γ : Γ]→ D[γ′ : F(Γ)]

is defined as the T -algebra morphism that sends γ to γ′. The naturality square

C[γ : Γ] D[γ′ : F(Γ)]

C[δ : ∆] D[δ′ : F(∆)]

C[f]

F[Γ]

D[F(f)]

F[∆]

commutes by the universal property of C[γ : Γ], as both paths send γ to F(f) ◦ δ′.
Checking functoriality is straightforward.

Lemma 6.3.3. If C is contextual, then for any representable sort (∂A ⊢ A typerep) ∈ T and
closed element (⊢ σ : ∂A) ∈ C, then (C � p) : C → (C � 1.(a : A(σ))) has the universal
property of C[a : A(σ)], where p is the projection 1.A(σ)→ 1.

Proof. Note that because C is contextual, we have C ∼= (C � 1); we implicitly identify
these two models. Similarly, ((C � 1.A(σ)) � 1.A(σ)) ∼= (C � 1.A(σ).A(σ)).

We name some morphisms between contexts:

1.(a1 : A(σ)).(a2 : A(σ)) 1.(a : A(σ)) 1.

p1

p2

p

d

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 100

The diagonal morphism d is a section of both p1 and p2.
Take any contextual model D, with a morphism F : C → D and an element (⊢ x :

A(F(σ))) ∈ D. We have a morphism ⟨x⟩ : 1→ 1.A(F(σ)) in D. It is a section of F(p).
We have to prove that there exists a unique morphism G : (C � 1.(a : A(σ))) → D

such that G(a) = x and G ◦ p⋆ = F. Assume given such a morphism.
Note that d = ⟨a⟩ in 1.A(σ).A(σ)→ 1.A(σ).
Consider the following diagram:

C � 1.A(σ) C � 1.A(σ).A(σ) C � 1.A(σ)

D D � 1.A(F(σ)) D

G

p⋆2

p⋆1
(F�1.A(σ))

id

(G�1.A(σ))

d⋆

G

F(p)⋆

id

⟨x⟩⋆

Because G(p2) = F(p) (this follows from p2 = p⋆(p) and G ◦ p⋆ = F) and G(a) = ⟨x⟩,
the two solid squares commute. Because d and ⟨x⟩ are sections of p2 and F(p), the solid
part of the diagram commutes.

The triangle formed by the two dashed arrows commutes, because it is the application
of the functor (− � 1.A(σ)) to the equality G ◦ p⋆ = F.

However d⋆ ◦ p⋆1 = d⋆ ◦ p⋆2 = id. Therefore the pentagon obtained by composing the
dashed triangle with the right square commutes.

Therefore G = ⟨x⟩⋆ ◦ (F � 1.A(σ)). This proves unicity, and the candidate ⟨x⟩⋆ ◦ (F �
1.A(σ)) always satisfies the necessary properties, witnessing the existence.

Remark 6.3.4. There is another way to arrive at the functor

C 7→ (Γ 7→ (C � Γ))

that sends a T -algebra to its contextual slice functor.
Consider the morphism

T cxl → T

of Σ-CwFs from definition 5.3.11. Its domain T cxl is a GAT, which can be seen as a
SOGAT without generating representable sorts.

Applying the functor that sends a SOGAT to its GAT of algebras, we obtain a
morphism of GATs

(T cxl)
fo → T fo,

which induces a functor AlgT fo → Alg
(T cxl)fo

.
An object of Alg

(T cxl)fo
is equivalently a category C with a terminal object together

with a functor Cop → AlgT cxl . The functor AlgT fo → Alg
(T cxl)fo

sends a T -algebra to its
contextual slice functor. It is not clear whether this provides an useful insight. ⌟

Proposition 6.3.5. Let D be a contextual T -algebra, K : TFamrep → T be a GAT morphism
selecting a representable sort (A : Ty ⊢ Tm(A) typerep) ∈ T and and F : C → K∗(D) be a
CwF morphism.

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 101

In the internal language of Psh(C), for every A : C.Ty(1), the map

DF[a : F(A)]→ (∏
a:C.Tm(A)

DF)

which sends a to (λa 7→ F(a)) is an isomorphism of T -algebras.

Proof. By lemma 6.3.3, we can consider (DF � (1.F(A))) instead of DF[a : F(A)].
The isomorphism can be checked levelwise. For any Γ ∈ C and A : C.Ty(Γ), we have

to compare the evaluation at (Γ, A) of the functors corresponding to

(DF � 1.F(A))

and
∏

a:C.Tm(A)

DF.

Write D[F(−)] for the functor corresponding to DF.
The operation (− � 1.−) can be induced by a morphism of GATs

T cxl → T cxl[A : Ty(1)].

Therefore it is computed objectwise, and the evaluation of the left hand side at Γ is

(D[F(Γ)] � 1.F(A))

which is isomorphic to (D[F(Γ).F(A)]).
Products with a locally representable domain can be computed by evaluating the

codomain at an extended context. This is also true for products of algebras of arbitrary
GATs. Thus the evaluation of the right hand side at Γ is

D[F(Γ.A)].

Because F is a morphism of CwFs, we have F(Γ).F(A) ∼= F(Γ.A), inducing an
isomorphism between the left and right hand sides.

If we track the underlying map of the isomorphism, we see that it coincides with the
components of the natural transformations corresponding to the internal map.

Write S for the initial T -algebra. Some results could also be stated for an arbitrary
initial algebra C, but can be recovered by working with the initial algebra of the GAT
T [\C] of T -algebras under C.

Our goal is to establish an universal property for the functor S [F(−)] : Cop → AlgT ,
depending on the functor F. Recall that the functor category [Cop, AlgT] is a CwF, where
objects are presheaves of algebras, types are presheaves of displayed algebras and terms
are presheaves of sections of displayed algebras. A universal property for an object
of this CwF is a way to construct terms of a given type, i.e. presheaves of sections of
displayed algebras over a given presheaf of displayed algebras.

Take a dependent functor

S•(−) : Cop → DispAlgT [S[F(−)]].

We want to understand how to construct a dependent functor

S(−) : Cop → SectT [S•(−)].

We first give an explicit description of the total category of SectT [S•(−)].

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 102

Definition 6.3.6. Let S•(−) : Cop → DispAlgT [S[F(−)]] be a dependent functor. The
category of sections SectopT [S•] of S• is the displayed category over C obtained as the
following pullback in Cat:

SectopT [S•] SectopT

C DispAlgop
T

π
⌟

S•(−)

In other words,

• A displayed object over Γ ∈ C is a section SΓ of S•(Γ) over S [F(Γ)].

By the universal property of S [F(Γ)] (which is S [γ : F(Γ)], such a section is
uniquely determined by SΓ(γ) : S•(Γ).Hom(1, F(Γ))[γ].

• A displayed morphism over (f : ∆ → Γ) ∈ C is a witness of the equality S∆ ◦
S [F(f)] = S•(f) ◦ SΓ.

S•(Γ) S•(∆)

S [F(Γ)] S [F(∆)]

S•(f)

S [F(f)]

SΓ S∆

To check this equality, it suffices to check that

(S•(f)(SΓ(γ)) = S∆(F(f) ◦ δ)) ∈ S•(∆).Hom(1, F(Γ))[F(f) ◦ δ]

• Identities and compositions are determined by horizontal compositions of the
above squares. ⌟

The data of a dependent functor Cop → SectT [S•(−)] is equivalent to the data of a
section of π : SectopT [S•]→ C.

We are typically interested in situations where C is defined similarly to the category of
renamings of a CwF, meaning that C is initial among categories equipped with a terminal
object preserved by F, some context extensions (locally representable presheaves) that
are also preserved by F, and possibly some additional operations preserved by F (in the
case of renamings, we do not include any such operation), up to some equations.

We therefore have to understand how to equip SectopT [S•] with the same data, as the
universal property of C can then provide a section of π : SectopT [S•]→ C.

We show in proposition 6.3.7 and proposition 6.3.8 how to equip SectopT [S•] with a
terminal object and with representing objects for local representable presheaves.

Proposition 6.3.7. If the category C has a terminal object 1C that is preserved by F, then
SectopT [S•] has a terminal object that is strictly preserved by π : SectopT [S•]→ C.

Proof. Note that S [F(1C)] ∼= S [1S] ∼= S is initial.
The terminal object is (1C , S1C) where S1C is the unique section of S•(1C) over S [F(1C)]

obtained from the initiality of S [F(1C)].
To check that this object is terminal, it suffices to check that the following diagram

commutes.

S•(1C) S•(Γ)

S [F(1C)] S [F(Γ)]

S•(f)

S [F(f)]

S1C SΓ

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 103

This also follows from the initiality of S [F(1C)].

Proposition 6.3.8. Let (X ⊢ Y typerep) ∈ T be a representable sort of T . This induces a
SOGAT morphism K : TFamrep → T , which induces in turn a functor K∗ : AlgT → CwF.

Assume that C has a CwF structure and that the functor F extends to a CwF morphism
F : C → K∗(S). We write XC , YC for the types and terms of the CwF C, XS and YS for the types
and terms of K∗(S) and FX, FY for the actions of F on types and terms. We write XS• and YS•

for the presheaf and dependent presheaf determined by the composition

Cop S•(−)−−−→ AlgT
K∗−→ CwF

eval1−−→ Fam,

where eval1 is evaluation of the presheaves of types and terms at the terminal object.
Assume that for every (Γ, SΓ) ∈ SectopT [S•] and x : XC(Γ), we have an operation

F•Y(Γ, SΓ, x) : YS•(Γ.YC [x], SΓ(FX(x))[pYC [x]], FY(qYC [x]))),

which is moreover natural in (Γ, SΓ): for every morphism f : (∆, S∆)→ (Γ, SΓ), we have

F•Y(Γ, SΓ, x)[f+] = F•Y(∆, S∆, x[f]).

Then the dependent presheaf (over π∗(XC) ∈ Psh(SectopT [S•]))

Y′(Γ, SΓ, x) ≜ {y : YC(Γ, x) | SΓ(y) = F•Y(Γ, SΓ, x)[y]}.

is locally representable (thus equipping Sectop[S•] with the structure of a CwF, and the projection
π : Sectop[S•]→ C strictly preserves context extensions (thus determining a CwF morphism).

Proof. We first check some equalities that are required for the statement to make sense.
In the line

F•Y(Γ, SΓ, x) : YS•(Γ.YC [x], SΓ(FX(x))[pYC [x]]), FY(qYC [x])),

we have SΓ(FX(x)) : XS•(Γ, FX(x)), and thus SΓ(FX(x))[pYC [x]] : XS•(Γ.YC [x], FX(x[pYC [x]])).
Then FY(qYC [x]) : YS(FX(x[pYC [x]])).

In the line
F•Y(Γ, SΓ, x)[f+] = F•Y(∆, S∆, x[f]),

we have f+ : ∆.YC [x[f]]→ Γ.XC [x].
In the line

Y′(Γ, SΓ, x) ≜ {y : YC(Γ, x) | SΓ(y) = F•Y(Γ, SΓ, x)[y]},

we have SΓ(y) : YS•(Γ, SΓ(FX(x)), FY(y)), and

F•Y(Γ, SΓ, x) : YS•(Γ.YC [x], SΓ(FX(x))[pYC [x]], FY(qYC [x])).

Thus F•Y(Γ, SΓ, x)[y] : YS•(Γ, SΓ(FX(x))[pYC [x]][y], FY(qYC [x])[y]), i.e.

F•Y(Γ, SΓ, x)[y] : YS•(Γ, SΓ(FX(x)), FY(y)).

Now take an object (Γ, SΓ) ∈ SectopT [S•] and an element x : π∗(XC)(Γ, SΓ), i.e.
x : XC(Γ). We have an extended context Γ.YC [x] in C representing the extension of Γ by
YC at x. We want to construct an object in SectopT [S•] that represents the extension of
(Γ, SΓ) by Y′ at x.

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 104

It should be displayed over Γ.YC [x]; its second component should be a section SΓ.YC [x]
of S•(Γ.YC [x]) over S [F(Γ.YC [x])].

Because F is a CwF morphism, we have F(Γ.YC [x]) = F(Γ).YS [FX(x)].

S•(Γ) S•(Γ.YC [x])

S [γ : F(Γ)] S [(γ, y) : F(Γ).YS [FX(x)]]

S•(pYC [x]
)

SΓ

S [pYC [x]
]

SΓ.YC [x]

We define SΓ.YC [x] as the extension of S•(pYC [x]) ◦ SΓ that sends y to F•Y(Γ, SΓ, x).
This determines an object (Γ.YC [x], SΓ.YC [x]) of SectopT [S•]. The map pYC [x] extends to

a morphism (Γ.YC [x], SΓ.YC [x]) → (Γ.YC [x], SΓ.YC [x]), corresponding to the commutation
of the above square.

We have an element qYC [x] : Y′(Γ.YC [x], SΓ.YC [x], x[pYC [x]]). For this we need to check

SΓ.YC [x](qYC [x]) = F•Y(Γ.YC [x], SΓ.YC [x], x[pYC [x]])[qYC [x]].

Indeed, SΓ.YC [x](qYC [x]) = F•Y(Γ, SΓ, x) by definition, and F•Y(Γ.YC [x], SΓ.YC [x], x[pYC [x]])[qYC [x]] =
F•Y(Γ, SΓ, x) by naturality.

Now take any (∆, S∆), a morphism f : (∆, S∆) → (Γ, SΓ) and an element y :
Y′(∆, S∆, x[f]). There is an extended substitution ⟨ f , y⟩ : ∆→ Γ.YC [x] in C. It extends to
a morphism in SectopT [S•], due to the commutation of the following square:

S•(Γ.YC [x]) S•(∆)

S [(γ, y) : F(Γ).YS [FX(x)]] S [δ : F(∆)].

S•(⟨ f ,y⟩)

SΓ.YC [x]

S [⟨ f ,y⟩]
S∆

Indeed, it suffices to check that γ and y are sent to the same element of S•(∆) by the two
paths. For γ, this follows from f : (∆, S∆)→ (Γ, SΓ) being a morphism in SectopT [S•]. In
the case of y, both path send it to F•Y(∆, S∆, x[f])[y], using the definition of SΓ.YC [x] and
the naturality of F•Y for the top path, and the fact that y : Y′(∆, S∆, x[f]) for the bottom
path.

Because the displayed morphisms of SectopT [S•] are propositional, the uniqueness of
the extended substitution holds for free.

This completes the definition of the representing objects for Y′, which is therefore
locally representable. By construction of the representing objects, they are strictly
preserved by the projection π : Sectop[S•]→ C.

6.3.1 Relative induction principle over renamings

We now give several variants of relative induction principles over renamings, i.e. relative
to the functor F : Ren(S)→ S , or more generally to a functor obtained as a composition

Ren(C) F−→ C G−→ S .

Definition 6.3.9. Let (X ⊢ Y typerep) ∈ T be a representable sort of T . This induces a
SOGAT morphism K : TFamrep → T , which induces in turn a functor K∗ : AlgT → CwF.

Let C be a CwF, S be the initial T -algebra, F : R→ C be the CwF of renamings of C
and G : C → K∗(S) be a CwF morphism1.

1In most applications, C = K∗(S) and G is the identity. The additional flexibility can be useful when
G : 0T1 → 0T2 is a morphism between the initial algebras of two theories. In that situation we get a relative
induction principle for 0T2 , but internally to the category of renamings of 0T1 .

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 105

A displayed T -algebra with partial variables is a displayed T -algebra S• over SF
together with a family of partial functions

S•.var : (A : CF.Ty(1))(A• : S•.Ty(1, G(A)))

→ (a : Var(A)) ⇀ S•.Tm(1, A•, var(a)).

Note that the notion of partial function is generalized algebraic; there is a GAT of
displayed T -algebras with partial variables.

A displayed T -algebra with variables is a displayed T -algebra S• over SF together
with an operation

S•.var : (A : CF.Ty(1))(A• : S•.Ty(1, G(A)))

→ (a : Var(A))→ S•.Tm(1, A•, var(a)). ⌟

Theorem 6.3.10 (Relative induction principle over a category of renamings). In the setting
of definition 6.3.9, the T -algebra SFG, trivially displayed over itself, is initial among T -algebras
with variables.

In other words, for every displayed T -algebra S• over SFG and operation

var• : (A : CF.Ty(1))(A• : S•.Ty(1, G(a)))(a : Var(A))→ S•.Tm(1, A•, G(var(A, a))),

there is a section J−K of S• over SFG such that

JG(var(A, a))K = var•(JG(A)K, a).

Proof. First note that the universal property we want to prove is the universal property
of the initial algebra of some global internal GAT. It suffices to prove the universal
property when S• is a global displayed algebra of this global internal GAT.

Take a global displayed T -algebra S• over SFG and a global operation

var• : (A : C.Ty)(A• : S•.Ty(1, G(a)))(a : Var(A))→ S•.Tm(1, A•, var(A, a)).

Externally, this corresponds to the data of a dependent functor

S•(−) : Rop → DispAlgT [S [F(−)]]

and an external natural transformation corresponding to var•. This natural transforma-
tion sends Γ ∈ R, A : C.Ty(F(Γ)), A• : S•(Γ).Ty(1, G(A)) and a : Var(Γ, A) to

var•(Γ, A•, a) : S•(Γ).Tm(1, A•, G(F(a))).

We consider the displayed category of sections SectopT [S•].

• By proposition 6.3.7, this category has a terminal object.

• By proposition 6.3.8, SectopT [S•] has a CwF structure, where:

– A type over (Γ, SΓ) is a type of R over Γ;

– A term of type A over (Γ, SΓ) is a term a of type A in R (i.e. a variable of type
A) such that

SΓ(var(a)) = var•(Γ, SΓ(A), a).

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 106

Thus, by the universal property of the CwF of renamings R, we obtain a section of
π : SectopT [S•]→ R, corresponding to a dependent functor

S(−) : Rop → SectT [S•(−)],

i.e. a section of S•(−), as needed.

We can generalize this relative induction principle to arbitrary T -algebras. For
a T -algebra S , we write ∆S for the internal T -algebra corresponding to a constant
presheaf

Cop ∋ − 7→ S ∈ AlgT .

For any F : C → S , there is a morphism ∆S → SF corresponding to the natural
transformation with components

S → S [F(Γ)].

Theorem 6.3.11. Let (X ⊢ Y typerep) ∈ T be a representable sort of T . This induces a SOGAT
morphism K : TFamrep → T , which induces in turn a functor K∗ : AlgT → CwF. Let C
be a CwF, S be any contextual T -algebra, F : R → C be the CwF of renamings of C and
G : C → K∗(S) be a CwF morphism.

Then, internally to Psh(Ren(C)), the T -algebra SFG, trivially displayed over itself, is initial
among T -algebras with variables under ∆S .

Proof. First remark that (S , idS) is the initial algebra of the GAT T cxl[\S]. We can con-
struct a SOGAT T [\S] such that (T [\S])cxl ∼= T cxl[\S]; indeed T cxl[\S] was constructed
by adding terms and equations to T cxl, and we can just add the same terms and equations
to T , at the correct sorts.

By applying theorem 6.3.10 to T [\S], we get a relative induction principle for SFG
(as an internal T [\S]-algebra).

One can show that a T [\S]-algebra is a T -algebra together with a morphism from T .
Thus the relative induction principle of SFG as an internal T [\S]-algebra is the induction
principle from the statement.

In some applications, instantiating var• can be more difficult than expected: we
need to define it for arbitrary values of A•, while we would expect to only define it
for A• = JAK. The problem is that the relative induction principle exhibits SF as the
initial algebra of an internal recursive GAT. This GAT needs to be recursive because one
cannot freely add variables in one step, since the type of some variable may involve
other variables.

We can have more control over the recursion by making it explicit using a sequential
colimit.

Theorem 6.3.12. We work in the setting of definition 6.3.9, in the internal language of
Psh(Ren(C)).

Observe that there is a endofunctor I over displayed T -algebras with partial variables such
that T -algebras with variables are exactly I-algebras. This endofunctor takes a displayed T -
algebra with partial variables S• and freely extends S• by defining the variables whose type
exists in S•.

Note that the initial T -algebra 0T is also the initial displayed T -algebra with partial variables,
in which none of the variables are defined.

Then SFG is the initial I-algebra, and by Adámek’s fixpoint theorem, it can be written as the
sequential colimit

SFG
∼= colim

n<ω
In(0T).

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 107

Proof. This follows directly from theorem 6.3.10.

Analogously, in the setting of theorem 6.3.11, we have an isomorphism

SFG
∼= colim

n<ω
In(∆S).

6.4 Application: normalization for MLTT and decidability of
equality

Our first application of a relative induction principle is a normalization proof for MLTT.
For our purposes, normalization means that every term (and type) of the syntax of MLTT
admits a normal form, which is moreover unique. In principle, multiple different notions
of normal forms could be chosen for different purposes. For example, we could say that
every terms has a unique normal form (itself), yielding a trivial (and useless) definition
of normal form. Instead, the notion of normal form is chosen so as to distinguish unequal
terms and permit a proof of decidability of equality. Normal forms will be defined as
an inductive family over terms. Normal forms are stable under renamings, but not
under arbitrary substitutions. Indeed, the normal form of a variable is always just a
variable, but a term with an arbitrary normal form can be substituted for a variable.
This motivates the use of the relative induction principle (theorem 6.3.10) for the functor
F : Ren(S)→ S which sends renamings to substitutions.

The normalization proof follows the structure of other algebraic and reduction-
free normalization proofs for dependent type theory (Altenkirch and Kaposi 2017;
Kaposi 2017; Coquand 2019; Sterling 2022). It is closely related to normalization-by-
evaluation (NbE). This means that normalization is performed in two steps. First, terms
are evaluated into a semantic domain (corresponding to a logical relation interpretation).
Secondly, elements of this semantic domain are mapped to a normal form for the original
term.

The uniqueness of normal forms follows from a property called stability of the
normalization function, which is proven by induction on normal forms. The proof of
this property relies on the computational behavior of the normalization function.

We will proceed to prove decidability of equality for the syntax. Intuitively, decid-
ability of equality is a direct consequence of normalization: normal forms “obviously”
have decidable equality, and normalization implies that to decide equalities between
terms, it suffices to decide equalities between their normal forms. Making this argument
formal is however not straightforward. One reason is that we define normal forms and
prove normalization in the internal language of a presheaf category. But decidability
of equality holds externally but not internally, and relating the internal normal forms
to an external notion of normal form is not easy: it involves computing the external
components of internal indexed inductive types; a task that seems “obvious” but is hard
to make formal. We will avoid external normal forms by working internally with the
notion of levelwise decidable propositions.

We work in the internal language of Psh(Ren(S)). We have access to the relativized
syntax SF, which satisfies the corresponding relative induction principle (theorem 6.3.10).

6.4.1 Normal forms

We first have to define normal forms (and normal types). They are defined at the same
time as neutral forms. The neutral forms are the terms that behave like variables in

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 108

normalization. For MLTT, the neutral forms are spines of eliminators, blocked on a
variable.

There is no general procedure that characterizes the neutral and normal forms for a
given type theory. As a heuristic, the neutral terms are the terms are indistinguishable
from variables in normal forms. Normal forms are not stable under arbitrary substitu-
tions, but they are stable under renamings, which are substitutions built from variables.
They should also be stable under neutral substitutions, which are substitutions build
from terms which are neutral. Moreover the neutral substitutions should be the maximal
class of substitution that stabilizes the normal forms. This cannot be used as a definition
of neutral form, since the definition of normal form depends on the notion of neutral
form.

The normal types, neutral forms and normal terms are defined as inductive families

NfTy : SF.Tyn(1)→ Set,
NeA : SF.Tm(1, A)→ Set,
NfA : SF.Ty(1, A)→ Set.

Any variable is a neutral term:

varne : (avar : Var(A))→ NeA(var(avar)).

We then add some constructors to these families for the type and term formers of
MLTT. The general heuristic is the following:

• Constructors have a corresponding normal form.

• Eliminators have a corresponding neutral form.

• Neutral forms for terms with a positive type (type structures without an η-rule)
can be turned into normal forms.

Lifting

lowerne : NfTyn(A)→ NeLiftn A(a)→ NeA(lower(a)),

Liftnftyn : NfTyn(A)→ NfTyn+1(Liftn(A)),

liftnf : NfTyn(A)→ NfA(a)→ NfLiftn(A)(lift(a)).

Universes

Unfty
n : NfTyn+1(Un),

Elnfty : NeUn(A)→ NfTyn(El(A)),

nenfEl : NeUn(A)→ NeEl(A)(a)→ NfEl(A)(a),

nftynfUn
: NfTyn(El(A))→ NfUn(A).

1-type

1nfty : NfTy(1),

ttnf : Nf1(tt).

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 109

Empty type

Emptynfty : NfTy(Empty),
absurdne : NeEmpty(x)→ Ne(absurd(x)),

nenfEmpty : NeEmpty(a)→ NfEmpty(a).

Boolean type

Boolnfty : NfTy(Bool),
elimBool : (∀bvar → NfTy(P[var(b)]))→ Nf(t)→ Nf(f)→
NeBool(b)→ NeP[b](elimBool(P, t, f , b)),

truenf : Nf(true),

falsenf : Nf(false),

nenfBool : NeBool(x)→ NeBool(x).

Σ-types

Σnfty : NfTy(A)→ (∀avar → NfTy(B[var(avar)]))→ NfTy(Σ(A, B)),
fstne : NeΣ(A,B)(p)→ NeA(fst(p)),

sndne : NeΣ(A,B)(p)→ NeB[fst(p)](snd(p)),

pairnf : NeΣ(A,B)(p)→ NeB[fst(p)](snd(p)).

Π-types

Πnfty : NfTy(A)→ (∀avar → NfTy(B[var(avar)]))→ NfTy(Π(A, B)),
appne : NeΠ(A,B)(f)→ NfA(x)→ NeB[x](app(f , x)),

lamnf : (∀avar → NfB[var(avar)](b[var(avar)]))→ NfΠ(A,B)(lam(b)).

Id-types

Idnfty : NfTy(A)→ NfA(x)→ NfA(y)→ NfTy(Id(A, x, y)),
Jne : NfTy(A)→ NfA(x)→
(∀yvarpvar → NfTy(P[var(yvar), var(pvar)]))→ NfP[x,refl(A,x)](d)→
Nf(y)→ NeId(A,x,y)(p)→ NeP[y,p](J(A, x, P, d, y, p)),

reflnf : NfTy(A)→ NfA(x)→ Nf Id(A,x,x)(refl(A, x)),

nenfId : NfTy(A)→ NfA(x)→ NfA(y)→ NeId(A,x,y)(p)→ Nf Id(A,x,y)(p).

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 110

W-types

Wnfty : NfTy(A)→ (∀avar → NfTy(B[var(avar)]))→ NfTy(W(A, B)),
elimWne : NfTy(A)→ (∀avar → NfTy(B[var(avar)])→
(∀xvar → NfTy(P[var(xvar)]))→
(∀avar f var → s[var(avar), var(f var)])→
NeW(A,B)(x)→ NeP[x](elimW(A, B, P, s, x))),

supnf : NfA(a)→ NfB[a]→W(A,B)(f)→ NfW(A,B)(sup(a, f)),

nenfW : NfTy(A)→ (∀avar → NfTy(B[var(avar)]))→ NeW(A,B)(x)→ NfW(A,B)(x).

6.4.2 The normalization displayed higher-order model

We construct a displayed higher-order model Norm of TMLTT over the relativized syntax
SF.

• A displayed type A• over a closed n-small type A : SF.Tyn(1) is a n-small normal-
ization family, that is a tuple (A•.pred, A•.nfty, A•.reflect, A•.reify) consisting of
the following components:

– A•.pred : SF.Tm(1, A)→ Setn is a unary logical predicate over closed terms
of type A.

– A•.nfty : NfTyn(A) is a normal form for the type A.

– A•.reflect : (a : SF.Tm(1, A))→ NeA(a)→ A•.pred(a) is a function showing
that neutral forms satisfy the predicate A•.pred.

– A•.reify : (a : SF.Tm(1, A)) → A•.pred(a) → NfA(a) is a function showing
that terms satisfying the predicate A•.pred admit a normal form.

• A displayed term a• of type A• over a closed term a : SF.Tm(1, A) is an element

a• : A•.pred(a).

Lifting
The normalization family Lift•n(A•) is defined using the corresponding components

of A•.

Lift•n(A•).nfty = Liftnf(A•.nfty),
Lift•n(A•).pred(x) = A•.pred(lower(x)),
Lift•n(A•).reflect(xne) = A•.reflect(lowerne(xne)),

Lift•n(A•).reify(x•) = liftnf(A•.reify(x•)).

Note that the definition of the logical predicate uses implicit lifting from Setn to
Setn+1 in the metatheory.

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 111

Universes
The normal form of the universe Un is Unfty

n .

U•n .nfty = Unfty
n .

For any A : SF.Tm(1, Un), the set U•n .pred(A) is defined as the set of n-small normal-
ization structures over the type El(A). This set is (n + 1)-small.

For any neutral term Ane : NeUn(A), U•n .reflect(Ane) should be a n-small normaliza-
tion structure over El(A):

U•n .reflect(Ane).nfty = Elnfty(Ane),
U•n .reflect(Ane).pred = λa 7→ NeEl(A)(a),

U•n .reflect(Ane).reflect = λane 7→ ane,

U•n .reflect(Ane).reify = λane 7→ nenfEl(Ane, ane).

The function U•n .reify then projects the normal type out of the n-small normalization
structure.

U•n .reify = λA• 7→ nftynfUn
(A•.nfty).

1-type
The definition of the displayed 1-type is straightforward.

1•.nfty = 1nfty,
1•.pred = λ− 7→ {⋆},
1•.reflect = λ− 7→ ⋆,

1•.reify = λ− 7→ ttnf .

Boolean types
The normal form of Bool is Boolnfty.

Bool•.nfty = Boolnfty.

The logical predicate Bool•.pred is inductively generated by three constructors.

Bool•.pred : SF.Tm(1,Bool)→ Set,
reflectBool : NeBool(b)→ Bool•.pred(b),
true• : Bool•.pred(true),
false• : Bool•.pred(false).

Remark that (the total space of) Bool•.pred is the free bipointed set over the set of neutral
forms of type Bool.

The reflection function is the constructor reflectBool.
The reification function for booleans is defined by induction over Bool•.pred:

Bool•.reify(reflectBool(bne)) = nenfBool(b
ne),

Bool•.reify(true•) = truenf ,

Bool•.reify(false•) = falsenf .

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 112

The displayed eliminator elimBool• is defined by induction on Bool•.pred:

elimBool•(P•, t•, f •, reflectBool(bne)) = elimBoolne(. . . , bne),
elimBool•(P•, t•, f •, true•) = t•,
elimBool•(P•, t•, f •, false•) = f •.

Empty types
The normal form of Empty is Emptynfty.

Empty•.nfty = Emptynfty.

The logical predicate Empty•.pred is inductively generated by a single constructor.

Empty•.pred : SF.Tm(1,Empty)→ Set,
reflectEmpty : NeEmpty(x)→ Empty•.pred(x).

The reification function for booleans is defined by induction over Empty•.pred:

Empty•.reify(reflectEmpty(xne)) = nenfEmpty(xne).

The displayed eliminator absurd• is defined by induction over Empty•.pred:

absurd•(P•, reflectEmpty(xne)) = absurdne(. . . , bne).

Σ-types
The definition of the logical predicate for Σ-type is forced by the required isomor-

phism

Tm•(Σ•(A•, B•), p) ∼= (a• : Tm•(A•, fst(p)))× Tm•(B•(a•), snd(p)).

Σ•(A•, B•).nfty = Σnfty(A•.nfty, λavar 7→ B•(varne(avar)).nfty),
Σ•(A•, B•).pred = λp 7→ (a• : A•.pred(fst(p)))× (b• : B•(a•).pred(snd(p))).

Then the reflection operation is defined using the reflection operations of A• and B•,
and the reification operation is defined using the reification operations of A• and B•.

Σ•(A•, B•).reflect = λpne 7→ (a•, B•(a•).reflect(sndne(pne))),
where a• = A•.reflect(fstne(pne)),

Σ•(A•, B•).reify = λ(a•, b•) 7→ pairnf(A•.reify(a•), B•(a•).reify(b•)).

Π-types
The definition of the logical predicate for Σ-type is forced by the required isomor-

phism

Tm•(Π•(A•, B•), f) ∼= (∀a(a• : Tm•(A•, a))→ Tm•(B•(a•), app(f , a))).

Π•(A•, B•).nfty = Πnfty(A•.nfty, λavar 7→ B•(varne(avar)).nfty),
Π•(A•, B•).pred = λ f 7→ ∀a (a• : A•.pred(a))→ (b• : B•(a•).pred(app(f , a))),

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 113

The reflection operation is defined using the reification operation of A• and the re-
flection operations of B•, whereas the reification operation is defined using the reflection
operation of A• and the reification operation of B•.

Π•(A•, B•).reflect = λ f ne 7→ λa• 7→ B•(a•).reflect(appne(f ne, anf)),

where anf = A•.reify(a•),

Π•(A•, B•).reify = λ f • 7→ lamnf(λavar 7→ B•(a•).reify(f •(a•))),
where a• = A•.reflect(varne(avar)).

Id-types

Id•(A•, x•, y•).nfty = Idnfty(A•.nfty, A•.reify(x•), A•.reify(y•)).

The logical predicate Id•(A•, x•, y•).pred is defined as an indexed inductive family
with two constructors.

Id•(A•, x•,−).pred(−)
: (y : SF.Tm(1, A))(y• : A•.pred(y))→ SF.Tm(1, Id(A, x, y))→ Set,

reflectId : ∀y• → NeId(A,x,y)(p)→ Id•(A•, x•, y•).pred(p),

refl• : Id•(A•, x•, x•).pred(refl(A, x)).

The reflection function is the constructor reflectId.
The reification function is defined by induction over that family:

Id•(A•, x•, y•).reify(reflectId(pne)) = nenfId (pne),

Id•(A•, x•, x•).reify(refl•) = reflnf(. . .).

The identity type eliminator is also defined by induction over it:

J•(. . . , reflectId(pne)) = Jne(. . . , pne),
J•(. . . , d•, refl•) = d•.

W-types
The normal form of a W-type is defined in the same way as for Σ- and Π- types.

W•(A•, B•).nfty = Wnfty(A•.nfty, λavar 7→ B•(varne(avar)).nfty).

The logical predicate W•(A•, B•).pred is defined as an indexed inductive family with
two constructors.

W•(A•, B•).pred(−)
: (x : SF.Tm(1, W(A, B)))→ Set,

reflectW : NeW(A,B)(x)→W•(A•, B•).pred(x),

sup• : (a• : A•.pred(a))(f • : ∀b (b• : B•(a•).pred(b))→W•(A•, B•).pred(app(f , b)))
→W•(A•, B•).pred(sup(a, f))

The reflection function is the constructor reflectW .

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 114

The reification function is defined by induction:

W•(A•, B•).reify(reflectW(xne)) = nenfW(xne),
W•(A•, B•).reify(sup(a•, f •))

= supnf(A•.reify(a•), λbvar 7→W•(A•, B•).reify(f •(B•(a•).reflect(varne(bvar)))))

The eliminator is defined using the universal property of W•(A•, B•).pred(−).

elimW•(P•, s•, reflectW(xne))

≜ P•(reflectW(xne)).reflect(elimWne(Pnfty, snf , xne)),

where Pnfty ≜ λxvar 7→ P•(reflectW(varne(xvar))).nfty,

snf ≜ λavar f var 7→ P•(sup•(a•, f •)).reify(s•(a•, f •)),

a• ≜ A•.reflect(varne(avar)),

f • ≜ λb b• 7→ reflectW(appne(varne(f var), B•(a•).reify(b•)))
elimW•(P•, s•, sup•(a•, f •))

≜ s•(a•, λb• 7→ elimW•(P•, s•, f •(b•))).

6.4.3 Normalization function

Note that we can define a displayed operation over variable terms:

var• : (A• : Ty•(A))(avar : Var(A))→ Tm•(A•, var(avar)),

var•(A•, avar) ≜ A•.reflect(varne(avar)).

The universal property of SF thus implies that we have a section J−K of the displayed
contextualization Cxl(Norm), such that JvarA(avar)K = var•(JAK, avar).

We define normalization functions:

normty : (A : Ty)→ NfTy(A),
normtm : (A : Ty)(a : Tm(A))→ NfA(a),
normty(A) = JAK.nfty,
normtm(A, a) = JAK.reify(JaK).

6.4.4 Uniqueness of normal forms

Now that we have normalization functions, establishing the existence of normal forms,
we can prove uniqueness by induction on normal forms. Each case relies on some of the
computation rules of the normalization function.

Lemma 6.4.1. The following three facts hold:

• For every Anfty : NfTy(A), we have normty(A) = Anfty.

• For every anf : NfA(a), we have normtm(a) = anf .

• For every ane : NeA(a), we have JAK.reflect(ane) = JaK.

Proof. By mutual induction on NfTy, Ne and Nf. We only list some of the cases.

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 115

Constructor varne

JAK.reflect(varne(avar))
= var•(JAK, avar) (Definition of var•)
= JvarA(a)K (Computation rule of J−K)

Constructor appne

JB(a)K.reflect(appne(f ne, anf))

= JBK(JaK).reflect(appne(f ne, anf))
(Computation rule of J−K on substituted types)

= JBK(JaK).reflect(appne(f ne, JAK.reify(JaK))) (Induction hypothesis for anf)
= JΠ(A, B)K.reflect(f ne, a•) (Computation rule for J−K on Π)
= J f K(JaK) (Induction hypothesis for f ne)
= Japp(f , a)K (Computation rule of J−K on app)

Constructor Πnfty

JΠ(A, B)K.nfty

= Πnfty(JAK.nfty, λavar 7→ JBK(JAK.reflect(varne(avar))).nfty)
(Computation rule of J−K on Π)

= Πnfty(JAK.nfty, λavar 7→ JBK(Jvar(avar)K).nfty)
(Computation rule of J−K on variables)

= Πnfty(JAK.nfty, λavar 7→ JB(var(avar))K.nfty)
(Computation rule of J−K on substituted types)

= Πnfty(Anfty, Bnfty) (Induction hypotheses for Anfty and Bnfty)

Constructor lamnf

JΠ(A, B)K.reify(Jlam(b)K)

= lamnf(λavar 7→ JBK(JAK.reflect(varne(avar))).reify(JbK(JAK.reflect(varne(avar)))))
(Computation rule of J−K on Π and lam)

= lamnf(λavar 7→ JBK(Jvar(avar)K).reify(JbK(Jvar(avar)K)))
(Computation rule of J−K on variables)

= lamnf(λavar 7→ JB(var(avar))K.reify(Jb(var(avar))K))
(Computation rule of J−K on substituted types and terms)

= lamnf(bnf) (Induction hypothesis for bnf)

Theorem 6.4.2 (Normalization). Any type A : SF.Ty(1) or term a : SF.Tm(1, A) has a
unique normal form (element of NfTy(A) or NfA(a)).

Proof. Existence is provided by the normalization function normty and normtm, and
uniqueness follows from lemma 6.4.1.

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 116

6.4.5 Decidability of equality

Normalization should imply decidability of equality: normal forms are defined as
indexed inductive families, and we know how to characterize equalities of such families.
Decidability of equality is however not stable under renaming. For example, different
variables x, y can become equal after applying the renaming [x 7→ y]. However variables
have a levelwise decidable equality, and we can prove internally to Psh(C) that types
and terms also have a levelwise decidable equality. Recall that we have defined levelwise
decidable propositions in section 2.3.5. We have proven that variables have levelwise
decidable equality in proposition 3.1.17.

Lemma 6.4.3. The sets

(A : SF.Tyn(1))×NfTyn(A),
(A : SF.Tyn(1))× (a : SF.Tm(1, A))×NeA(a),
(A : SF.Tyn(1))× (a : SF.Tm(1, A))×NfA(a)

have levelwise decidable equality.

Proof. Write (
.
=) for equality in the total spaces of the families NfTy, Ne and Nf, e.g.

(Anfty
1

.
= Anfty

2) stands for (A1, Anfty
1) = (A2, Anfty

2) in (A : SF.Tyn(1))×NfTyn(A).
There are two approaches:

• By mutual double induction on pairs of normal types, neutral types or normal
forms, we can recursively characterize equality in the total spaces.

For example,

(Πnfty(Anfty
1 , Bnfty

1)
.
= Πnfty(Anfty

2 , Bnfty
2))

= (Anfty
1

.
= Anfty

2) ∧ (∀avar → Bnfty
1 (avar) .

= Bnfty
2 (avar)).

Note that ∧ above is actually dependent: we need to know that A1 = A2 so as to
make avar a variable of that type. Each case can be written using dependent sums,
quantification over variables and equalities between smaller neutral or normal
forms. Using the closure properties of levelwise decidable propositions, we can
prove that these propositions are levelwise decidable.

• An alternative is to present NfTy, Ne and Nf using an indexed W-type, i.e. as the
least fixed point of an indexed container.

Then one can make use of general theorems to characterize equalities in the total
spaces of indexed W-types. We prove a suitable theorem in theorem A.2.12.

Corollary 6.4.4. The sets SF.Tyn(1) and SF.Tm(1, A) have levelwise decidable equality.

Proof. The sets

(A : SF.Tyn(1))×NfTyn(A),
(A : SF.Tyn(1))× (a : SF.Tm(1, A))×NfA(a)

have levelwise decidable equality.
By normalization, NfTyn(A) and NfA(a) are contractible. Thus the sets

SF.Tyn(1),
(A : SF.Tyn(1))× SF.Tm(1, A)

have levelwise decidable equality, as needed.

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 117

Finally, we can obtain decidability of equality externally for the syntax S .

Theorem 6.4.5. The sets of types and terms of the initial algebra of MLTT have decidable
equality.

Proof. We prove decidability of equality for types, the case of terms is analogous. Take
a context Γ ∈ S . Since F : Ren(S) → S is surjective on objects, we have a renaming
context Γ0 ∈ Ren(S) such that F(Γ0) = Γ.

By lemma 6.3.3, the set S .Ty(Γ) is isomorphic to the set S [Γ].Ty(1), which is equal to
S [F(Γ0)].Ty(1). But, by corollary 6.4.4, the presheaf SF.Ty(1) over Ren(S) has levelwise
decidable equality. This implies that its evaluation at Γ0 has decidable equality, i.e.
S [F(Γ0)].Ty(1) has decidable equality.

6.5 Application: normalization for extensions of MLTT

6.5.1 Extension: Strict algebras

We show normalization for an extension of MLTT with a type of lists satisfying the
monoid laws strictly. The methods we use should also allow for extensions of MLTT with
types of strict algebras for other generalized algebraic theories. Decidability of equality
should however be provable exactly when the GAT has decidable equality, meaning that
the components of its classifying Σ-CwF have decidable equality (which is the case for
the algebraic theory of monoids). There is a caveat: when considering algebraic theories
with non-linear equations, such as groups (with the non-linear equation (x− x) = 0),
normal forms are no longer stable under all renamings, and normalization needs to be
interleaved with the decidability of equality. The case of non-linear equations will be
discussed in more details in section 6.5.3.

The signature for this extension consists of the following operations and equations:

List : Tyn → Tyn,
ι : A→ List(A),
nil : List(A),
(−++−) : List(A)→ List(A)→ List(A),
nil++ x = x,
x ++ nil = x,
(x ++ y) ++ z = x ++ (y ++ z),
elimList : (P : List(A)→ Tym)(n : P(nil))(c : ∀x l → P(l)→ P(ι(x) ++ l))→
∀l → P(l),

elimList(P, n, c, nil) = n,
elimList(P, n, c, ι(x) ++ y) = c(x, elimList(P, n, c, y)).

We have to identify what are the normal forms for this type of lists, and how they
interact with neutral forms. The observation is that, analogously to how normal forms
for elements of a boolean type are elements of the free bipointed set over the set of
neutral boolean terms, the normal forms for these lists should be elements of the free
monoid over the set of neutral list terms.

For any type A : SF.Ty(1), the set SF.Tm(1, ListA) is equipped with a monoid struc-
ture, with the operations nil and (−++−). We define a family

NfListA : SF.Tm(1, ListA)→ Set

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 118

of normal lists as the underlying family of the free displayed monoid over SF.Tm(1, List(A))
equipped with maps

nenflist : NeList(A)(l)→ NfListA(l),

ιnflist : NfA(x)→ NfListA(ι(x)).

This means that an element of NfListA(l) is a list whose elements are either neutral
elements of ListA or normal elements of A, and such that the term l is the concatenation
of their underlying terms.

We then define neutral and normal forms by extending the definition from sec-
tion 6.4.1 with three new constructors:

Listnfty : NfTy(A)→ NfTy(List(A)),
elimListne : NfTy(A)→ Nf(b)→ Nf(c)
→ NeList(A)(l)→ NfListA(w)→ Ne(elimList(P, b, c, l ++ w)),

nflistnf : NfListA(l)→ NfList(A)(l)

For any displayed type A• in the normalization higher-order model, we define the
family List•(A•).pred : SF.Tm(1, List(A)) → Set as the underlying family of the free
displayed monoid over SF.Tm(1, List(A)) equipped with maps

reflectList : NeList(A)(l)→ List•(A•).pred(l),

ι• : A•.pred(x)→ List•(A•).pred(ι(x)).

This means that an element of List•(A•).pred(l) is a list whose elements are either neutral
elements of ListA or terms satisfying the predicate A•.pred, and such that the term l is
the concatenation of their underlying terms.

The map List•(A•).reify : List•(A•).pred(l)→ NfList(A)(l) is defined as a composition

List•(A•).pred(l)
reifyList−−−−→ NfListA(l)

nflistnf−−−→ NfList(A)(l),

where the first function is defined using the universal property of List•(A•).pred(l) and
A•.reify, as the unique displayed monoid morphism such that

reifyList(reflectList(lne)) = nenflist(lne),

reifyList(ι•(x•)) = ιnflist(A•.reify(x•)).

The normal type List•(A•).nfty is Listnfty(A•.nfty).
The displayed operations nil• and ++• are the operations of the displayed monoid

List•(A•).pred. The displayed strict associativity and identity laws follow from the fact
that the displayed monoid List•(A•).pred satisfies these laws.

It remains to define the displayed eliminator. We know that List•(A•).pred(−) is a
free displayed monoid equipped with maps reflectList and ι•. Because free monoids are
just lists, we know that List•(A•).pred(−) is also free among displayed families over
SF.Tm(1, List(A)) equipped with operations

nil• : List•(A•).pred(nil),
(reflectList(−) ++−)

: (lne : NeList(A)(l))→ List•(A•).pred(w)→ List•(A•).pred(l ++ w),

(ι•(−) ++−)
: (x• : A•.pred(x))→ List•(A•).pred(w)→ List•(A•).pred(ι(x) ++ w).

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 119

We can therefore define:

elimList•(P•, n•, c•, nil•) = n•,
elimList•(P•, n•, c•, reflectList(lne) ++ w•)

= P•(. . .).reflect(elimListne(. . . , lne, reifyList(w•)))
elimList•(P•, n•, c•, ι•(x•) ++ w•)

= c•(x•, elimList•(P•, n•, c•, w•)).

Remark 6.5.1. The eliminator elimList is not an eliminator for free monoids, but rather
for right-nested lists.

We could include distinct eliminators for both right-nested and left-nested lists, and
the normalization proof would still go through. ⌟

Remark 6.5.2. The proof of decidability of equality is trickier than in the case of MLTT,
because normal forms are now defined as a quotient inductive-inductive type. In this
case, we can choose to define NfList using right-nested lists so as to avoid quotienting;
decidability of equality can then be proven in the same way as for MLTT.

For more complicated algebraic theories, such as rings, quotienting cannot be avoided
in this way. One has to make use of the fact that the free algebras functors are finitary
and commute with sequential colimits. The normal forms can then be expressed as a
sequential colimit of normal forms with bounded height. See theorem A.2.13 for the
details. ⌟

6.5.2 Extension: Strict functoriality

We extend the theory further by the following operations and equations:

map : (A→ B)→ List(A)→ List(B),
map(f , ι(x)) = ι(f (x)),
map(f , nil) = nil,
map(f , x ++ y) = map(f , x) ++map(f , y),
map(id, l) = l,
map(f ◦ g, l) = map(f ,map(g, l)),

where (A→ B) is a binder rather than a function type.
Strict functoriality was also covered by the methods of Allais, McBride, and Boutillier

(2013), and was later studied from another point of view by Laurent, Lennon-Bertrand,
and Maillard (2024). The approach presented here follows the ideas of the latter paper. I
have chosen to include strict functoriality to show that it is mostly orthogonal to strict
algebras.

When proving normalization for strict monoids, we had to change the notion of
normal list. In order to prove normalization for this extension, we have to change the
notion of neutral list: for any neutral list l, the list map(f , l) is also considered neutral.
In order to deal with the functoriality laws, we need a representation of neutral lists that
includes this equation.

The family CNeListA : SF.Tm(1, List(A)) → Set of compacted neutral list is induc-
tively generated (mutually with neutral and normal forms) by the following constructor:

mapcne : NfTy(B)→ NfTy(A)→ (∀bvar → NfA(f [var(bvar)]))→
NeList(B)(l)→ CNeListA(map(f , l)).

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 120

Compacted neutral lists are used instead of neutral lists in the constructors for normal
forms that previously referred to neutral lists:

cnenflist : CNeListA(l)→ NfListA(l),
elimListne : NfTy(A)→ Nf(b)→ Nf(c)
→ CNeListA(l)→ NfListA(w)→ Ne(elimList(P, b, c, l ++ w)).

The constructor reflectList is changed as follows:

reflectList : NfTy(B)→ (f • : ∀bvar → A•(app(f , var(bvar))))→
NeList(B)(l)→ List•(A•).pred(map(f , l)).

Its arguments can be seen as a semantic counterpart of compacted neutral list.
The reflection function for lists is then defined as

List•(A•).reflect(lne) = reflectList(A•.nfty, (λavar 7→ A•.reflect(varne(avar))), lne),

where we rely on the equation map(id, l) = l. The rest of the normalization model is
unchanged, and it only remains to define the displayed map operation.

The operation map•(f •) : List•(A•).pred(l) → List•(B•).pred(map(f , l)) is defined
using the universal property of the free displayed monoid List•(A•).pred(−). Thus it
suffices to define its action on ι• and reflectList.

map•(f •, ι•(a•))
= ι•(f •(a•)),

map•(f •, reflectList(Xnfty, g•, lne))

= reflectList(Xnfty, (λxvar → f •(g•(xvar))), lne).

In order to check the functoriality equations, it suffices to look at the actions on ι• and
reflectList, which indeed satisfy the functoriality equations.

6.5.3 Discussion: normalization in presence of non-linear equations

Most of the ideas we have used to prove normalization for MLTT with strict monoids can
also be applied to other algebraic structures. However, there is one crucial part where we
have relied on the specificities of monoids: when doing normalization for the eliminator,
we have gone through the equivalence between free monoids and right-nested lists.

We indeed run into some trouble when trying to deal with eliminators for algebraic
structures with non-linear equations. For example, we may want to extend the type
theory with types Z[A] of polynomial rings, which have the structure of a ring with
definitional equations. The algebraic theory of rings includes the non-linear equation

(x− x) = 0.

By itself, this non-linear equation is not an issue, but it becomes problematic when
considered in conjunction with an operation is-zero : Z[A]→ Bool with the computation
rule is-zero(0) = true.

The problem with non-linear equations is that normalization now needs to be inter-
leaved with equality checking: in order to normalize is-zero(u− v), one needs to decide
the equality of u and v.

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 121

• Normal forms are no longer stable under renamings. Indeed, for x, y different
variables, is-zero(x − y) is in normal form, and is moreover neutral. But, after
renaming [x 7→ y], it reduces to is-zero(x− x), which is no longer neutral and may
unblock some other computation.

• At first glance, it seems possible to proceed with a different notion of normal
form. A very similar issue arises in normalization for cubical type theories: the
normal forms are not stable under general substitution of interval variables, but the
semantics of cubical type theory require access to arbitrary substitutions of interval
variables. The solution of Sterling and Angiuli (2021) involves changing the notion
of normal form, or more specifically the notion of neutral form, by annotating
neutrals with a frontier of instability, indicating that a neutral may stop being neutral
in a “future world” (in the sense of Kripke semantics, i.e. after application of a
substitution of interval variables).

This approximately means that normal forms become trees that include all possible
“future” normal forms, quotiented in such a way that redundancy is avoided in the
representation.

The same approach can be adopted to define normal forms in our case: is-zero(x−
y) should be a neutral with frontier of instability (x = y), meaning that it stops
being neutral when (x = y).

• There are still issues when trying to proceed with the normalization proof. The
core of the problem lies in the difference between normal forms and semantic
values.

As mentioned is-zero(x− y) should stop being neutral when (x = y). This means
that we need to explain how to resume computation if we learn that (x = y). Here
the equality (x = y) is really an equality between normal forms, i.e. an equality
in the total space of Nf. But in the normalization model, we are really computing
with semantic values. Even when (x = y), we may have different semantic values
(x• ̸= y•) in the computation of is-zero•(x• − y•). This is even more problematic
for a more dependent version of is-zero, such as

is-zero : (x : Z[A])→ Maybe(x = 0).

One possible way to proceed could be to make sure that (x• = y•) can be deduced
from (x = y), e.g. by restricting the logical predicates to propositions, or less
restrictively by ensuring that the reification functions are injective. Unfortunately,
this doesn’t seem possible: for some types, notably Π-types, there is no choice
in the definition of the logical predicates, and there exists base models (consider
the terminal model) for which the reification functions are not injective (even
though we only care about the initial model in the end, initiality is only used after
constructing the normalization model; the construction of the normalization model
works for an arbitrary base model).

Another option is to reuse frontiers of instability and consider “exceptional neu-
trals”

assert(φ),

which are neutral away from some proposition φ, at an arbitrary type and over
an arbitrary term. We can then block the computation of is-zero•(x• − y•) until

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 122

x• = y• holds: its value would essentially be

(assert(x• = y•); true•),

where we know that the proposition x• = y• holds in true•.

Using a subsequent induction on the syntax, we would then prove that the excep-
tional neutrals never occur in normal forms. That approach may work, but seems
to require propositional resizing, as propositions φ of arbitrary size can be used in
the exceptional neutrals.

6.6 Application: conservativity of two-level type theory

The two-level type theory of Annenkov, Capriotti, Kraus, and Sattler (2023) is a type
theory with two levels, called inner and outer levels. Inner types can be seen as outer
types, but not the other way around. The two levels are allowed to have different identity
types, with different strictness. Typically, the inner level is HoTT and the outer level
models MLTT with UIP,

One of the motivation for two-level type theory is to support metaprogramming or
staging when the inner language is not strict enough or not rich enough. In the context
of HoTT, this is often used to describe constructions that are possible for any externally
fixed natural number n, but not by internal quantification on n : Nat.

We present two-level type theory as a SOGAT T2ltt, parametrized by SOGATs Tinner

and Touter for the inner and outer theories.

Definition 6.6.1. Let Tinner and Touter be two SOGATs, along with a chosen representable
sort (A : ty ⊢ tm(A) typerep) ∈ Touter. We define a new SOGAT T2ltt, presented by:

• A SOGAT morphism I : Tinner → T2ltt.

• A SOGAT morphism O : Touter → T2ltt.

• For every generating sort (γ : Γ ⊢ A(γ) type) ∈ Tinner, we have a new type

(γ : I(Γ) ⊢ ⌜A⌝(γ) : ty) ∈ T2ltt,

along with an isomorphism

(γ : I(Γ) ⊢ tm(⌜A⌝(γ)) ∼= I(A)(γ)) ∈ T2ltt. ⌟

Thus two-level type theory embeds both the inner and the outer theories, with
additional rules expressing that every inner sort corresponds to terms of some outer
type.

One of the main classes of models of two-level type theory are presheaf models:

• Simplicial and cubical presheaf models of HoTT also model two-level type theory.
The outer layer is interpreted as the presheaf model of extensional type theory, and
the inner layer corresponds to its restriction to fibrant types.

• If C is any model of HoTT, then Psh(C) is a model of a two-level type theory, with
HoTT as the inner layer and extensional type theory as the outer layer. More
generally, if C is any Tinner-algebra, then Psh(C) is a T2ltt-algebra with extensional
type theory as the outer layer

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 123

The Yoneda embedding よ : C → Psh(C) then extends to a morphism of Tinner-
algebras that is moreover a contextual isomorphism (bijective on every sort). This
is essentially due to the Yoneda lemma.

It is known that two-level type theory with a suitable outer layer is conservative
over its inner layer. We show how to prove this result from an application of a relative
induction principle over (Σ, Πrep)-CwFs. We can view this result as a generalization of
canonicity, in which the canonical forms for terms of inner types are terms of the original
model. In fact we can recover the canonicity of MLTT from the conservativity result for
a two-level type theory with only booleans in the inner layer.

Our goal is to prove that the actions of I on terms are bijective.
The proof of this theorem will involve induction on both Tinner and T2ltt. Write

R : Ren(Tinner)→ Tinner for the CwF of renamings of the (Σ, Πrep)-CwF Tinner, and work
internally to Psh(Ren(Tinner)). Then by theorem 6.3.11, (T2ltt)IR and (Tinner)R satisfy the
following induction principles:

• For every displayed (Σ, Πrep)-CwF T • over (T2ltt)IR, dependent (Σ, Πrep)-CwF
morphism i• : ∆T2ltt → T •[i] (over i : ∆T2ltt → (T2ltt)IR) and family

var• : (A : TR.Ty(1))(A• : T •.Ty(1)[I(A)])(a : Var(A))→ T •.Tm(1, A•)[I(var(a))],

there is a section J−K of T • such that Ji(−)K = i•(−) and JvarA(a)K = var•(JI(A)K, a).

• For every displayed (Σ, Πrep)-CwF T § over (Tinner)R, dependent (Σ, Πrep)-CwF
morphism i§ : ∆Tinner → T §[i] (over i : ∆Tinner → (Tinner)R) and family

var§ : (A : (Tinner)R.Ty(1))(A§ : T §.Ty(1)[A])(a : Var(A))→ T §.Tm(1, A§)[var(a)],

there is a section J−K of T § such that Ji(−)K = i§(−) and JvarA(a)K = var§(JAK, a).

The displayed higher-order model over (T2ltt)IR

We first construct a displayed (Σ, Πrep)-family T• over (T2ltt)IR. The components of T•

are distinguished by a superscript −•.

• A displayed type over A : (T2ltt)IR.Ty(1) is a unary logical predicate

A•.pred : (T2ltt)IR.Tm(1, A)→ Set.

The displayed representable types are defined in the same way.

• A displayed term of type A• over a : (T2ltt)IR.Tm(1, A) is an element

a• : A•.pred(a).

• The logical predicates for the 1-, Σ- and Π- types are defined in the same way as
previously encountered; up to isomorphism, there is no choice in their definitions.

We can construct the displayed contextualization Cxl(T•), which is a displayed
contextual (Σ, Πrep)-CwF over (T2ltt)IR. However we are not yet able to apply the
relative induction principle over (T2ltt)IR and obtain a section of Cxl(T•); we are missing
an interpretation i• of ∆T2ltt and an interpretation var• of variables.

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 124

We will need to use the universal property of (Tinner)R to construct the interpretation
of variables. The displayed contextualization Cxl(T•) can be restricted to a displayed
(Σ, Πrep)-CwF Cxl(T•)[IR] over T .

Cxl(T•)[IR] Cxl(T•)

(Tinner)R (T2ltt)IR

⌟

IR

The displayed higher-order model over (Tinner)R

We define a displayed (Σ, Πrep)-family T§ over the total (Σ, Πrep)-CwF of Cxl(T•)[IR]:

• A displayed type over A : Tinner.Ty(1) and A• : T2ltt.Tm(1, IR(A))→ Set consists,
for every a : (T2ltt)IR.Tm(1, IR(A)), of an isomorphism

A§.reify : A•(a) ∼= {a0 : (Tinner)R.Tm(1, A) | IR(a0) = a} : A§.reflect.

Note that this family of isomorphisms induces a total isomorphism

(Tinner)R.Tm(1, A) ∼= (a : (T2ltt)IR.Tm(1, IR(A)))× A•(a),

that extends the action

(Tinner)R.Tm(1, A)→ (T2ltt)IR.Tm(1, IR(A)).

of IR on closed terms.

• A displayed term of type A§ over a : Tinner.Tm(1, A) and a• : A•(IR(a)) is a proof
of the equality

a• = A§.reflect(a).

• The reify and reflect functions for 1-types are trivial.

• In the case of Σ- and Π-types, we have (A, A•, A§) and (B, B•, B§), and we want
to construct an isomorphisms

Σ§.reify(p) : Σ•(A•, B•)(p) ∼= {p0 : (Tinner)R.Tm(1, Σ(A, B)) | IR(p0) = p},
Π§.reify(f) : Π•(A•, B•)(f) ∼= { f0 : (Tinner)R.Tm(1, Π(A, B)) | IR(f0) = f },

where

B• : ∀(a : (T2ltt)IR.Tm(1, IR(A))) (a• : A•(a))
→ Ty•(B[a]),

B§ : ∀(a : (Tinner)R.Tm(1, A)) (a• : A•(IR(a))) (a§ : a• = A§.reify(a))

→ Ty§(B[a], B•(IR(a), a•)).

Note that we can simplify B§ to

B§ : ∀(a : (Tinner)R.Tm(1, A))→ Ty§(B[a], B•(A§.reify(a))).

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 125

The definition of Σ§ is straightforward:

Σ§(a, b).reify(a•, b•) ≜ (A§.reify(a•), B§(a).reify(b•)),

Σ§(a, b).reflect(a0, b0) ≜ (A§.reflect(a0), B§(a).reflect(b0)).

The definition of Π§ is more complicated; it is essentially the following:

Π§(f).reify(f •)

≜ lam(λavar 7→ B§(var(avar)).reify(f •(A§.reflect(var(avar))))),

Π§(f).reflect(f0)

≜ (λa a• 7→ B§(A§.reify(a•)).reflect(app(f0, A§.reify(a•)))),

but we need to justify the quantification over variables in the λ-abstraction lam(λavar 7→
. . .) appearing in the definition of the reification. Here lam is the λ-abstraction
of the model (Tinner)R; it should take a term in the context (1.A) ∈ (Tinner)R. This
quantification over variables is justified by the isomorphism

((Tinner)R � (1.A)) ∼= ∏
Var(A)

(Tinner)R

from proposition 6.3.5.

We also need to verify that Π§(f).reify and Π§(f).reflect are inverses. We need to
prove the β- and η− rules transposed through the above isomorphism.

Π§(f).reify(Π§(f).reflect(f0))

= lam(λavar 7→ B§(var(avar)).reify(B§(. . .).reflect(app(f0, A§.reify(A§.reflect(var(avar)))))))
(Unfolding the definitions)

= lam(λavar 7→ B§(var(avar)).reify(B§(var(avar)).reflect(app(f0, var(avar))))))
(Simplifying A§)

= lam(λavar 7→ app(f0, var(avar))) (Simplifying B§)
= f , (By the η-rule)

Π§(f).reflect(Π§(f).reify(f •))

= λa a• 7→ B§(A§.reify(a•)).reflect(app(f0, A§.reify(a•)))

where f0 = lam(λavar 7→ B§(var(avar)).reify(f •(A§.reflect(var(avar)))))
(Unfolding the definitions)

= λa a• 7→ B§(A§.reify(a•)).reflect(B§(A§.reify(a•))).reify(f •(A§.reflect(A§.reify(a•))))
(By the β-rule)

= λa a• 7→ B§(A§.reify(a•)).reflect(B§(A§.reify(a•))).reify(f •(a•))
(Simplifying A§)

= λa a• 7→ f •(a•) (Simplifying B§)
= f •.

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 126

Applying the relative induction principle over (Tinner)R

This finishes the definition of the displayed (Σ, Πrep)-family T§. We can now construct
its contextualization Cxl(T§), which is displayed over Cxl(T•)[IR].

Cxl(T§)

Cxl(T•)[IR] Cxl(T•)

∆Tinner (Tinner)R (T2ltt)IR

⌟

iinner

i§
inner

IR

Our next goal is to construct a dependent morphism i§
inner : ∆Tinner → Cxl(T§)[iinner], as

shown in the above diagram.
For this purpose, since ∆Tinner is type-presented, it suffices to prove that the projection

Cxl(T§)→ (Tinner)R is surjective on types and bijective on terms.
A type of Cxl(T§) over a context (Γ, Γ•, Γ§) is a triple (A, A•, A§), where

A : (Tinner)R.Ty(Γ),
A• : ∀(γ : (T2ltt)IR(1, IR(Γ))) (γ• : Γ•(γ))→ (T2ltt)IR.Tm(1, IR(A))→ Set,

A§ : ∀γ0 (γ
• : Γ•(IR(γ0))) (γ

§ : Γ§(γ0, γ•))→ ∀a→ A•(a) ∼= {a0 | IR(a0) = a}.

For any base type A, we can define the other components

A•(γ, γ•, a) ≜ {a0 | IR(a0) = a},
A§(γ, γ•, γ§, a) = id,

witnessing that the projection Cxl(T§) → (Tinner)R is surjective on types. A term of
Cxl(T§) of type (A, A•, A§) is a triple (a, a•, a§), where

a : (Tinner)R.Tm(Γ, A),
a• : ∀(γ : (T2ltt)IR(1, IR(Γ))) (γ• : Γ•(γ))→ A•(γ, γ•, IR(a)[γ]),

a§ : ∀γ0 (γ
• : Γ•(IR(γ0))) (γ

§ : Γ§(γ0, γ•))→ a•(IR(γ0), γ•) = A§(γ0, γ•, γ§).reify(a[γ0]).

Because (Tinner)R is contextual, and using the telescopic contextualization for Cxl(T§),
we can see the context (Γ, Γ•, Γ§) as a closed type. As a consequence Γ§ is a family of
equivalences

{γ0 | IR(γ0) = γ} ∼= Γ•(γ),

and Γ§(γ0, γ•) above means that γ0 is related to γ•.
We then observe that (γ• : Γ•(IR(γ0)))× (γ§ : Γ§(γ0, γ•)) is contractible, and that

(γ : (T2ltt)IR(1, IR(Γ)))× (γ• : Γ•(γ)) is equivalent to (γ0 : (Tinner)R(1, Γ)). Thus both
a• and a§ above can be brought to depend on the same parameters (γ0, γ•, γ§). For any
such (γ0, γ•, γ§), the set

(a• : A•(IR(γ0), γ•, IR(a[γ0])))× (a• = A§(γ0, γ•, γ§).reify(a[γ0]))

is contractible. The components a• and a§ are therefore uniquely determined, i.e. the
projection Cxl(T§)→ (Tinner)R is bijective on terms.

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 127

We thus obtain the desired section i§
inner : ∆Tinner → Cxl(T§)[iinner] from ∆Tinner being

type-presented.
We can then define an operation var§.

var§ : ∀A ((A•, A§) : Cxl(T§).Ty(1)[A]) (a : Var(A))→ A•(IR(var(a))),

var§((A•, A§), a) = A§.reflect(var(a)).

By the universal property of (Tinner)R, we obtain a section J−K of Cxl(T§) such that
Ji(−)K = i§(−) and JvarA(a)K = var§(JAK, a).

Applying the relative induction principle over (T2ltt)IR

We now want to use the universal property of (T2ltt)IR and obtain a section of Cxl(T•).
Our next goal is to construct the dependent morphism i• : ∆T2ltt → Cxl(T•)[i]. Using
the universal property of ∆T2ltt, it suffices to define

i•∆I : ∆Tinner → Cxl(T•)[i ◦ ∆I],

i•∆O : ∆Touter → Cxl(T•)[i ◦ ∆O],

and additional data corresponding to the types

(γ : Γ ⊢ ⌜A⌝(γ) : ty) ∈ T2ltt.

and isomorphisms
(γ : Γ ⊢ tm(⌜A⌝(γ)) ∼= A(γ)) ∈ T2ltt.

The morphism i•∆I is defined as the composition of the three top maps in the above
diagram:

Cxl(T§)

Cxl(T•)[IR] Cxl(T•)

∆Tinner (Tinner)R (T2ltt)IR

⌟

iinner

i§
inner

IR

The morphism i•∆O is defined using the universal property of the outer SOGAT Touter,
which we assumed to be TMLTT. If we unfold the definitions, we observe that we have to
define exactly a higher-order displayed model of TMLTT over (the underlying model of
TMLTT of) (T2ltt)IR. We define it exactly like the canonicity model from section 6.2.

Finally, we need to define the interpretation of the types ⌜−⌝ and of the associated
isomorphisms. Take a generating sort (γ : Γ ⊢ A(γ) type) of Tinner. We need to define
a displayed term ⌜A⌝• of type i•∆O(ty) in Cxl(T•) that lies over iinner⌜A⌝, along with a
displayed type isomorphism tm•(⌜A⌝•) ∼= i•∆I(A) over i•∆I(Γ).

⌜A⌝•(a) ≜ {a0 : (Tinner)R.Tm(1, iinner(A)) | IR(a0) = a}.

This data determines i• : ∆T2ltt → Cxl(T•)[i].
The final step should be to define an operation var•.

var• : ∀A (A• : Cxl(T•).Ty(1)[IR(A)]) (a : Var(A))→ A•(IR(var(a))).

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 128

We essentially want to pose var•(A, A•, a) = JAK.reflect(var(a)). This is however not
possible because we do not know whether A• = JAK. In principle this shouldn’t be
an issue, because after obtaining the section L−M of Cxl(T•), we would only care about
var•(A, LIR(A)M, a) and we would know that LIR(A)M = JAK.

To make the proof work, we have to mutually perform the construction of var•,
the induction on (T2ltt)IR and the proof of LIR(−)M = J−K (which is another induction
on (Tinner)R. For this purpose, we use the characterization of (T2ltt)IR as a colimit
from theorem 6.3.12, so as to essentially only define var• for types that we control.

The details below are quite complex; the idea is to alternate between defining var•

for some variables, and proving LIR(−)M = J−K for the types that can be built from
the variables that have already been seen. This is repeated until var• is defined on all
variables.

We have, by theorem 6.3.12, the following characterization

(Tinner)R
∼= colim

n<ω
Jn
inner(∆Tinner),

where Jinner is the endofunctor of displayed algebras with partial variables from theo-
rem 6.3.12.

We write Jn
inner(∆Tinner) = (∆Tinner)[var(a) | a ∈ Varn(A)]; where Varn(A) are the

variable that are defined in Jn
inner(∆Tinner).

We have the same characterization for (T2ltt)IR, but we can also choose to add
variables to (∆T2ltt) at the same speed as for (∆Tinner):

(T2ltt)IR
∼= colim

n<ω
(∆T2ltt)[var(a) | a ∈ Varn(A)].

The displayed algebras with partial variables (∆T2ltt)[var(a) | a ∈ Varn(A)] actually
need to be defined by induction on n, together with maps

αn : (∆Tinner)[var(a) | a ∈ Varn(A)]→ (∆T2ltt)[var(a) | a ∈ Varn(A)].

We then obtain a morphism of sequential diagrams, inducing the map IR : (Tinner)R →
(T2ltt)IR between the colimits.

For n ≤ m ≤ ω, we write jm
inner,n and jm

2ltt,n for the finite or transfinite compositions of
maps in the two sequential diagrams.

Now, by induction on n, we construct a section L−Mn of the displayed model Cxl(T •)[jω
2ltt,n]

over
(∆T2ltt)[var(a) | a ∈ Varn(A)]

such that
Lαn(−)Mn = Jjω

inner,n(−)K,

and for every a ∈ Varn(A),

Lvar(a)Mn = Jjω
inner,n(A)K.reflect(var(a))

(which is well-typed thanks to the previous equality).
In the base case, we use the section i• : ∆T2ltt → Cxl(T•)[i]. In the recursive case,

we construct L−Mn+1 by extending L−Mn. We have to define the action of L−Mn+1 on the
variables of Varn+1(A). The variables that are added at stage n + 1 have types that exist
at stage n, so we can define Lvar(a)Mn+1 ≜ Jjω

inner,n(A)K.reflect(var(a)); this relies on the
induction hypothesis Lαn(−)Mn = Jjω

inner,n(−)K. By the second induction hypothesis, this
coincides with the actions of L−Mn on variables that were already defined at stage n.

CHAPTER 6. RELATIVE INDUCTION PRINCIPLES 129

We also have to prove Lαn+1(−)Mn+1 = Jjω
inner,n+1(−)K; this follows from the universal

property of (∆Tinner)[var(a) | a ∈ Varn+1(A)] as an extension of (∆Tinner)[var(a) | a ∈
Varn(A)].

By lifting the sections to the colimit, we obtain a section L−M of Cxl(T •). Take a
closed type A : (Tinner)R.Ty(1) and a term a : (T2ltt)IR.Tm(1, IR(A)). We have LaM :
LIR(A)M.pred(a). Moreover, LIR(A)M = JAK, implying that

JAK.reify : LIR(A)M.pred(a) ∼= {a0 : (Tinner)R.Tm(1, A) | IR(a0) = a.} : JAK.reflect

Thus a0 = JAK.reify(LaM) is a preimage of a. Finally, given any other a1 such that IR(a1) =
a, we have Ja1K : LaM = JAK.reflect(a1). Thus a1 = JAK.reify(LaM) = a0.

Therefore the actions of IR on closed terms are bijective.

Theorem 6.6.2. If T2ltt is a two level type theory for an inner theory Tinner and an outer theory
Touter = TMLTT, the (Σ, Πrep)-CwF morphism I : Tinner → T2ltt is bijective on terms.

Proof. The result we have just proven internally to Psh(Ren(Tinner)) implies that for
any Γ : Ren(Tinner), the actions of I on terms in context R(Γ) are bijective. But R :
Ren(Tinner)→ Tinner is essentially surjective on objects, so the actions of I on terms are
bijective over arbitrary contexts.

Appendix A

Equalities in the total spaces of
indexed W-types

The goal of this appendix is to give a characterization of equality in the total space

Σi:IWC(i)

of the indexed W-type WC : I → Set associated to an indexed container C.
By characterizing equalities in the total space Σi:IWC(i), we mean proving that for

any x, y : Σi:IWC(i) belongs to some class of propositions, such as decidable proposi-
tions, levelwise decidable propositions, or perhaps just homotopy propositions in a
homotopical setting, etc. We will require that this class of propositions is closed under
some operations; one can think of it as a dominance (Rosolini 1986).

Note that it is alternatively possible to characterize the equality of WC(i) itself, as
another indexed W-type indexed by (x, y : I)× (x = y), or to prove that the equality
of WC(i) itself belongs to some class of propositions. Such results have been proven
by Hugunin (2017), or by de Jong (2021, Theorem 66).

This is however not directly useful for us: in our applications to normalization,
the indexed W-type is the predicate of being a normal form, which is known to be
contractible as a result of the normalization proof. Thus we already know that its
equality is trivial, and we are actually interested in the equality of I.

Generalizing indexed W-types, we may want to characterize the equality in the total
space

Σi:I Fω

of the initial algebra Fω of an endofunctor F : SetI → SetI .
We first cover the case of a general endofunctor, and then show how it specializes to

indexed containers.

A.1 Endofunctors

Definition A.1.1. A good class of propositions L is a family

L : Prop→ Prop,

i.e. a subset L ⊆ Prop, closed under:

• Finite conjunctions and disjunctions;

130

APPENDIX A. EQUALITIES IN THE TOTAL SPACES OF INDEXED W-TYPES 131

• Dependent sums;

• Sequential colimits. ⌟

Examples include all propositions, decidable propositions, and levelwise decidable
propositions in the internal language of presheaves (by lemma 2.3.24).

Definition A.1.2. A set A has L-equality if for every x, y : A, the proposition (x = y) is
in L. ⌟

Lemma A.1.3. Consider a sequence

X0
ι10−→ X1 −→ . . . −→ Xn

ιn+1
n−−→ Xn+1 −→ . . .

If the maps ιn+1
n are all injective and the sets Xn have L-equality, then the colimit colim

n<ω
Xn has

L-equality.

Proof. We write ιmn : Xn → Xm for the finite compositions of the maps (when n ≤ m),
and ιωn : Xn → colim

n<ω
Xn for the transfinite composition into the sequential colimit.

Take two elements in the colimit. Because we are proving a proposition, we can
assume that they can be written ιωn (x) and ιωm(y). By moving to max(n, m), we can
assume without loss of generality that n = m.

Now equality in a sequential colimit is the sequential colimit of equality:

(ιωn (x) = ιωn (y)) ∼= colim
k<ω

(ιn+k
n (x) = ιn+k

n (y)).

But the maps (ιn+k
n (x) = ιn+k

n (y)) → (ιn+k+1
n (x) = ιn+k+1

n (y)) are equivalences
because the map ιn+k+1

n+k is injective. So the second colimit is just the proposition (x = y).
This is an equality in Xn+k, hence this proposition is in L.

Thus (ιωn (x) = ιωn (y)) is also in L, as needed.

Definition A.1.4. A functor F : SetI → SetO is ω-finitary if it preserves sequential
colimits. ⌟

Definition A.1.5. A functor F : SetI → SetO preserves L-equality if for every family
X : I → Set, if Σi:I X(i) has L-equality, then Σo:OF(X)(o) has L-equality. ⌟

Theorem A.1.6. Let L be a good class of propositions and F be an endofunctor F : SetI → SetI .
If F is ω-finitary, preserves L-equality and preserves monomorphisms, then the total space
Σi:I Fω(i) has L-equality.

Proof. By Adámek’s fixed point theorem, since F is ω-finitary, the initial algebra can be
written as a colimit

Fω(i) ∼= colim
n<ω

Fn(i),

where F0(i) = ∅ and Fn+1(i) = F(Fn)(i).
We also have

Σi:I Fω(i) ∼= colim
n<ω

Σi:I Fn(i),

since Σi:I commutes with colimits.
We can prove by induction on n that Σi:I Fn(i) has L-equality. The base case is trivial,

since ∅ has L-equality. In the recursive case, we use the fact that F preserves L-equality
as an I-indexed container.

APPENDIX A. EQUALITIES IN THE TOTAL SPACES OF INDEXED W-TYPES 132

Also by induction on n, we can prove that Fn(i)→ Fn+1(i) is a monomorphism. The
base case is trivial, since any map from ∅ is a monomorphism. In the recursive case, we
use the fact that F preserves monomorphisms.

The maps Σi:I Fn(i)→ Σi:I Fn+1(i) are then injective. Thus, by lemma A.1.3, Σi:I Fω(i)
has L-equality, as needed.

A.2 Indexed containers

We recall the definition of indexed containers by Altenkirch, Ghani, et al. (2015).

Definition A.2.1. An (I, O)-indexed container C consists of the following components:

C.shape : Set,
C.position : C.shape→ Set,
C.query : (s : C.shape)→ C.position(s)→ I,
C.response : C.shape→ O.

Its associated functor is

J−KC : SetI → SetO,
JXKC(o)

≜ (s : C.shape | C.response(s) = o)
× ((p : C.position(s))→ X(C.query(p))). ⌟

Definition A.2.2. An indexed W-type is the least fixed point of an (I, I)-indexed con-
tainer C, i.e. the indexed inductive type with the following presentation:

WC : I → Set,
sup : (s : C.shape)→ (f : (p : C.position(s))→WC(C.query(p)))
→WC(C.response(s)). ⌟

By I-indexed container, we mean an (I,⊤)-indexed container, i.e. an indexed con-
tainer without the response component. These are used to describe constructors which
do not have a specified output index yet.

Containers are usually constructed from some number of combinators.

• There is an I-indexed container ⊤, with

⊤.shape = ⊤,
⊤.position(−) = ⊥.

This is used for nullary constructors.

• Given an I-indexed container C and a family of I-indexed containers D indexed
by C.shape, there is an I-indexed container Σ(C, D), with

Σ(C, D).shape = (sc : C.shape)× (sd : D(sc).shape),
Σ(C, D).position(sc, sd) = C.position(sc) + D(sc).position(sd),
Σ(C, D).query((sc, sd), pc : C.position(sc)) = C.query(pc),
Σ(C, D).query((sc, sd), pd : D(sc).position(sd)) = D(sc).query(pd).

This is used for constructors with multiple arguments.

APPENDIX A. EQUALITIES IN THE TOTAL SPACES OF INDEXED W-TYPES 133

• For any set X, there is an I-indexed container A(X), with X shapes and no positions.
This is used for non-recursive arguments to constructors.

• For any map f : X → I, there is an I-indexed container RX(f), with

RX(f).shape = X,
RX(f).position(x) = ⊤,
RX(f).query(x,−) = f (x).

This is used for recursive arguments to constructors.

• Given a set X and a family of I-indexed container C indexed by X, there is an
I-indexed container CX, with

CX.shape = ((x : X)→ C(x).shape),

CX.position(s) = (x : X)× C(x).position(s(x)),

CX.query(s, (x, p)) = C(x).query(p).

• Given any I-indexed container C it is possible to attach a response function
response : C.shape → O to obtain an (I, O)-indexed container (C & response).
This is used to specify the output index of a constructor.

• Given two (I, O)-indexed containers C and D, there is a container (C + D), with

(C + D).shape = C.shape+ D.shape,
(C + D).position = [C.position; D.position],
(C + D).query = [C.query; D.query],
(C + D).response = [C.response; D.response].

This is used to combine multiple constructors.

Most containers used in practice will be sums of constructors with an attached
response, with each constructor given by an iterated dependent sum of non-recursive
and recursive arguments.

For example, consider Fin defined as an inductive family indexed by N.

Fin : N→ Set,
fz : (n : N)→ Fin(n + 1),
fs : (n : N)→ Fin(n)→ Fin(n + 1).

We have corresponding (N, N)-containers for every constructor.

Cfz = A(N) & (λn 7→ n + 1),
Cfs = Σ(A(N), λn 7→ R⊤(− 7→ n)) & (λ(n,−) 7→ n + 1).

The container for Fin is the sum of the containers for each constructor:

CFin = Cfz + Cfs.

Then the indexed W-type WCFin
: N→ Set is isomorphic to Fin.

APPENDIX A. EQUALITIES IN THE TOTAL SPACES OF INDEXED W-TYPES 134

Definition A.2.3. An (I, O)-indexed container C is ω-finitary if for every s : C.shape, the
set C.position(s) is ω-compact, meaning that the functor (C.position(s)→ −) preserves
sequential colimits. ⌟

Lemma A.2.4. If an (I, O)-indexed container C is ω-finitary, then the associated functor
J−KC : SetI → SetO is ω-finitary, i.e. it preserves sequential colimits.

Proof. Straightforward.

Definition A.2.5. An (I, O)-indexed container preserves L-equality if its associated
functor J−K : SetI → SetO preserves L-equality. ⌟

We now prove that these two semantic conditions (being ω-finitary and preserving
L-equalities) are preserved by the container combinators, with side conditions in some
cases.

Lemma A.2.6. If C preserves L-equality and D(s) preserves L-equality for every s, then Σ(C, D)
preserves L-equality.

If C is ω-finitary and D(s) is ω-finitary for every s, then Σ(C, D) is ω-finitary.

Proof. We can construct an isomorphism

JXKΣ(C,D)
∼= ((sc,−) : JXKC)× JXKD(sc)

.

This implies that Σ(C, D) preserves L-equality whenever C and D(−) do.
The indexed container Σ(C, D) being ω-finitary follows from ω-compact sets being

closed under binary sums.

Lemma A.2.7. If C and D preserve L-equality, then (C + D) preserves L-equality.
If C and D are ω-finitary, then (C + D) is ω-finitary.

Proof. Straightforward.

Lemma A.2.8. If the set X has L-equality, then A(X) preserves L-equality.
For any set X, the indexed container A(X) is ω-finitary.

Proof. Straightforward, note that JFKA(X) is constantly X.

Lemma A.2.9. If the map f : X → I is injective, then RX(f) preserves L-equality.
For any map f : X → I, the indexed container RX(f) is ω-finitary.

Proof. It is clear that RX(f) is ω-finitary, since it has a single position at any shape.
We have JFKRX(f)

∼= ((i : I) × F(i) × (x : X | f (x) = i)). If f is injective, then
(x : X | f (x) = i), which is the fiber of f at i, is a proposition. Therefore its equality is
contractible, and is therefore in L. Assuming that Σi:I F(i) has L-equality, then JFKRX(f)
has L-equality. Thus RX(f) preserves L-equality.

Lemma A.2.10. If ((x : X)→ −) preserves L-equality and C is a family of indexed containers
preserving L-equality, then CX preserves L-equality.

If X is ω-compact and C is a family of ω-finitary indexed containers, then indexed container
CX is ω-finitary.

APPENDIX A. EQUALITIES IN THE TOTAL SPACES OF INDEXED W-TYPES 135

Proof. We have an isomorphism JFKCX ≜ ((x : X)→ JFKC(x)). If both ((x : X)→ −) and
C(x) preserve L-equality, then J−KCX , which is their composite, also preserves L-equality.

The set of positions of CX over a shape (x, s) is (x : X)× C(x).position(s(x)). If both
X and C(x).position(s(x)) are ω-compact, then their dependent sum is ω-compact. Thus
CX is ω-finitary when X is ω-compact and C(x) is ω-finitary for any x.

Lemma A.2.11. The associated functor J−KC : SetI → SetO of any indexed container C
preserves monomorphisms.

Proof. Take a monomorphism f : X → Y in SetI (a levelwise injective natural transfor-
mation).

The fiber of JFKC : JXKC(o)→ JYKC(o) at some (s, g) : JYKC(o) can be computed to

∀(p : C.position(s))→ (x : X(C.query(p)) | fC.query(p)(x) = g(p)),

i.e. to a product of fibers of fi.
Since the functions fi are injective, their fibers are propositions. The product of

propositions is a proposition, so the fiber of JFKC at (s, g) is a proposition, as needed.

Theorem A.2.12. Let L be a good class of propositions and C be an (I, I)-indexed container. If
C is ω-finitary and preserves L-equality, then the total space Σi:IWC(i) has L-equality.

Proof. This follows from theorem A.1.6, using lemma A.2.4 and lemma A.2.11.

We can also prove a variant of theorem A.2.12 for nested indexed inductive type.
We consider an (I + T, I)-indexed container C and a functor F : SetI → SetT. The set I
corresponds to the sorts that are generated by the nested indexed inductive type, and the
set T corresponds to the nested sorts. The indexed container C describes the constructors
for the non-nested sorts. The functor F describes how the nested sorts are constructed
from the non-nested sorts.

Theorem A.2.13. Let C be an (I + T, I)-indexed container and F : SetI → SetT be a functor.
We construct an endofunctor

G : SetI → SetI ,
G(X) = λi 7→ J[I ∋ i 7→ X(i); T ∋ t 7→ F(X)(t)]KC(i).

If both C and F are ω-finitary and preserve L-equality, and if F preserves monomorphisms,
then G is ω-finitary, preserves L-equality and preserves monomorphisms, hence its initial algebra
Gω exists and

Σi:IGω(i)

has L-equality.

Proof. The functor G is the composition of [Id; F] : SetI → SetI+T and J−KC : SetI+T →
SetI . Functors that are ω-finitary, preserve L-equality and monomorphisms are closed
under copairing and compositions, so the functor G satisfies these semantic conditions,
as needed.

Example A.2.14. As an example, we define a notion of normal form for a type theory
extended with a type R with the structure of a ring (with definitional ring laws).

We consider the functor Z[−] : Set→ Ring that constructs a free ring over a set.

APPENDIX A. EQUALITIES IN THE TOTAL SPACES OF INDEXED W-TYPES 136

As an indexed inductive type, neutral terms and normal forms would be defined as
follows (we omit the constructors that would correspond to other type formers):

Ne : (X : Ty(1))(x : Tm(1, X))→ Set,
varne : (xvar : Var(X))→ Ne(X, var(xvar)),
Nf : (X : Ty(1))(a : Tm(1, X))→ Set,

ringnf : (P : Z[ΣxNe(R, x)])→ Nf(R, JPK).

We pose

I = {ne(X, x) | x : Tm(1, X)}+ {nf(X, x) | x : Tm(1, X)},
T = {ring(P) | P : Z[Tm(1, R)]}.

We define an (I + T, I)-indexed container C:

Cvar ≜ A(Var(X)) & λ(X, xvar) 7→ ne(A, var(avar)),

Cring ≜ R(λP 7→ ring(P)) & λP 7→ nf(R, P),

C ≜ Cvar + Cring.

We also define a functor F : SetI → SetT:

F(Y, ring(P)) = {Q : Z[ΣxY(ne(R, x))] | map(fst, Q) = P}.

It should be possible to check that F satisfies the conditions of theorem A.2.13. ⌟

Bibliography

Abel, Andreas (2013). “Normalization by Evaluation: Dependent Types and Impredica-
tivity”. Habilitation thesis. Ludwig-Maximilians-Universität München. URL: http:
//www.cse.chalmers.se/~abela/habil.pdf.

Abel, Andreas, Joakim Öhman, and Andrea Vezzosi (Dec. 2017). “Decidability of con-
version for type theory in type theory”. In: Proc. ACM Program. Lang. 2.POPL. DOI:
10.1145/3158111. URL: https://doi.org/10.1145/3158111.

Adamek, J. and J. Rosicky (1994). Locally Presentable and Accessible Categories. London
Mathematical Society Lecture Note Series. Cambridge University Press.

Adjedj, Arthur, Meven Lennon-Bertrand, Kenji Maillard, Pierre-Marie Pédrot, and Loïc
Pujet (2024). “Martin-Löf à la Coq”. In: Proceedings of the 13th ACM SIGPLAN In-
ternational Conference on Certified Programs and Proofs, CPP 2024, London, UK, Jan-
uary 15-16, 2024. Ed. by Amin Timany, Dmitriy Traytel, Brigitte Pientka, and San-
drine Blazy. ACM, pp. 230–245. DOI: 10.1145/3636501.3636951. URL: https:
//doi.org/10.1145/3636501.3636951.

Agda Developers (2025). Agda. Version 2.8.0. URL: https://agda.readthedocs.
io/.

Ahrens, Benedikt and Peter LeFanu Lumsdaine (2019). “Displayed Categories”. In: Log.
Methods Comput. Sci. 15.1. DOI: 10.23638/LMCS-15(1:20)2019. URL: https:
//doi.org/10.23638/LMCS-15(1:20)2019.

Allais, Guillaume, Conor McBride, and Pierre Boutillier (2013). “New equations for
neutral terms: a sound and complete decision procedure, formalized”. In: Proceedings
of the 2013 ACM SIGPLAN workshop on Dependently-typed programming, DTPICFP
2013, Boston, Massachusetts, USA, September 24, 2013. Ed. by Stephanie Weirich. ACM,
pp. 13–24. DOI: 10.1145/2502409.2502411. URL: https://doi.org/10.
1145/2502409.2502411.

Altenkirch, Thorsten, Paolo Capriotti, Thierry Coquand, Nils Anders Danielsson, Si-
mon Huber, and Nicolai Kraus (2017). Type Theory with Weak J. 23rd International
Conference on Types for Proofs and Programs.

Altenkirch, Thorsten, Neil Ghani, Peter G. Hancock, Conor McBride, and Peter Morris
(2015). “Indexed containers”. In: J. Funct. Program. 25. DOI: 10.1017/S095679681500009X.
URL: https://doi.org/10.1017/S095679681500009X.

Altenkirch, Thorsten, Martin Hofmann, and Thomas Streicher (1995). “Categorical recon-
struction of a reduction free normalization proof”. In: Category Theory and Computer
Science. Ed. by David Pitt, David E. Rydeheard, and Peter Johnstone. LNCS 953,
pp. 182–199.

— (1997). “Reduction-free normalisation for system F”.
Altenkirch, Thorsten and Ambrus Kaposi (2017). “Normalisation by Evaluation for Type

Theory, in Type Theory”. In: Log. Methods Comput. Sci. 13.4. DOI: 10.23638/LMCS-
13(4:1)2017. URL: https://doi.org/10.23638/LMCS-13(4:1)2017.

137

http://www.cse.chalmers.se/~abela/habil.pdf
http://www.cse.chalmers.se/~abela/habil.pdf
https://doi.org/10.1145/3158111
https://doi.org/10.1145/3158111
https://doi.org/10.1145/3636501.3636951
https://doi.org/10.1145/3636501.3636951
https://doi.org/10.1145/3636501.3636951
https://agda.readthedocs.io/
https://agda.readthedocs.io/
https://doi.org/10.23638/LMCS-15(1:20)2019
https://doi.org/10.23638/LMCS-15(1:20)2019
https://doi.org/10.23638/LMCS-15(1:20)2019
https://doi.org/10.1145/2502409.2502411
https://doi.org/10.1145/2502409.2502411
https://doi.org/10.1145/2502409.2502411
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.23638/LMCS-13(4:1)2017
https://doi.org/10.23638/LMCS-13(4:1)2017
https://doi.org/10.23638/LMCS-13(4:1)2017

BIBLIOGRAPHY 138

Annenkov, Danil, Paolo Capriotti, Nicolai Kraus, and Christian Sattler (2023). “Two-
level type theory and applications”. In: Math. Struct. Comput. Sci. 33.8, pp. 688–743.
DOI: 10.1017/S0960129523000130. URL: https://doi.org/10.1017/
s0960129523000130.

Awodey, Steve (2018). “Natural models of homotopy type theory”. In: Math. Struct.
Comput. Sci. 28.2, pp. 241–286. DOI: 10.1017/S0960129516000268. URL: https:
//doi.org/10.1017/S0960129516000268.

Awodey, Steve, Nicola Gambino, and Sina Hazratpour (July 2024). “Kripke-Joyal forcing
for type theory and uniform fibrations”. In: Selecta Mathematica 30.4. ISSN: 1420-9020.
DOI: 10.1007/s00029-024-00962-2. URL: http://dx.doi.org/10.1007/
s00029-024-00962-2.

Bauer, Andrej, Philipp G. Haselwarter, and Peter LeFanu Lumsdaine (2020). A general
definition of dependent type theories. arXiv: 2009.05539 [math.LO]. URL: https:
//arxiv.org/abs/2009.05539.

Bednarczyk, Marek, Andrzej Borzyszkowski, Wieslaw Pawlowski, and Michael Barr (Jan.
1999). “Generalized Congruences| Epimorphisms in Cat”. In: Theory and Applications
of Categories 5, pp. 266–280.

Bocquet, Rafaël, Ambrus Kaposi, and Christian Sattler (2023). “For the Metatheory of
Type Theory, Internal Sconing Is Enough”. In: 8th International Conference on Formal
Structures for Computation and Deduction, FSCD 2023, July 3-6, 2023, Rome, Italy. Ed. by
Marco Gaboardi and Femke van Raamsdonk. Vol. 260. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 18:1–18:23. DOI: 10.4230/LIPICS.FSCD.2023.
18. URL: https://doi.org/10.4230/LIPIcs.FSCD.2023.18.

Brunerie, Guillaume (2020). Initiality for Martin-Löf type theory. https://www.math.
uwo.ca/faculty/kapulkin/seminars/hottestfiles/Brunerie-2020-
09-10-HoTTEST.pdf.

Capriotti, Paolo (2017). “Models of type theory with strict equality”. PhD thesis. Univer-
sity of Nottingham, UK. URL: http://ethos.bl.uk/OrderDetails.do?uin=
uk.bl.ethos.719436.

Cartmell, John (Jan. 1986). “Generalised Algebraic Theories and Contextual Categories”.
In: Annals of Pure and Applied Logic 32, pp. 209–243. ISSN: 0168-0072. DOI: 10.1016/
0168-0072(86)90053-9. (Visited on 05/29/2024).

Chapman, James (2008). “Type Theory Should Eat Itself”. In: Proceedings of the Interna-
tional Workshop on Logical Frameworks and Metalanguages: Theory and Practice, LFMT-
PLICS 2008, Pittsburgh, PA, USA, June 23, 2008. Ed. by Andreas Abel and Christian
Urban. Vol. 228. Electronic Notes in Theoretical Computer Science. Elsevier, pp. 21–36.
DOI: 10.1016/J.ENTCS.2008.12.114. URL: https://doi.org/10.1016/j.
entcs.2008.12.114.

Clairambault, Pierre and Peter Dybjer (2014). “The biequivalence of locally cartesian
closed categories and Martin-Löf type theories”. In: Math. Struct. Comput. Sci. 24.6.
DOI: 10.1017/S0960129513000881. URL: https://doi.org/10.1017/
S0960129513000881.

Coquand, Thierry (2019). “Canonicity and normalization for dependent type theory”.
In: Theor. Comput. Sci. 777, pp. 184–191. DOI: 10.1016/J.TCS.2019.01.015. URL:
https://doi.org/10.1016/j.tcs.2019.01.015.

Corbyn, Nathan, Ohad Kammar, Sam Lindley, Nachiappan Valliappanand, and Jeremy
Yallop (2022). “Normalization by Evaluation with Free Extensions”. extended ab-
stract.

https://doi.org/10.1017/S0960129523000130
https://doi.org/10.1017/s0960129523000130
https://doi.org/10.1017/s0960129523000130
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.1007/s00029-024-00962-2
http://dx.doi.org/10.1007/s00029-024-00962-2
http://dx.doi.org/10.1007/s00029-024-00962-2
https://arxiv.org/abs/2009.05539
https://arxiv.org/abs/2009.05539
https://arxiv.org/abs/2009.05539
https://doi.org/10.4230/LIPICS.FSCD.2023.18
https://doi.org/10.4230/LIPICS.FSCD.2023.18
https://doi.org/10.4230/LIPIcs.FSCD.2023.18
https://www.math.uwo.ca/faculty/kapulkin/seminars/hottestfiles/Brunerie-2020-09-10-HoTTEST.pdf
https://www.math.uwo.ca/faculty/kapulkin/seminars/hottestfiles/Brunerie-2020-09-10-HoTTEST.pdf
https://www.math.uwo.ca/faculty/kapulkin/seminars/hottestfiles/Brunerie-2020-09-10-HoTTEST.pdf
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.719436
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.719436
https://doi.org/10.1016/0168-0072(86)90053-9
https://doi.org/10.1016/0168-0072(86)90053-9
https://doi.org/10.1016/J.ENTCS.2008.12.114
https://doi.org/10.1016/j.entcs.2008.12.114
https://doi.org/10.1016/j.entcs.2008.12.114
https://doi.org/10.1017/S0960129513000881
https://doi.org/10.1017/S0960129513000881
https://doi.org/10.1017/S0960129513000881
https://doi.org/10.1016/J.TCS.2019.01.015
https://doi.org/10.1016/j.tcs.2019.01.015

BIBLIOGRAPHY 139

Curien, Pierre-Louis (1993). “Substitution up to Isomorphism”. In: Fundam. Informaticae
19.1/2, pp. 51–85.

De Boer, Menno (2020). “A proof and formalization of the initiality conjecture of de-
pendent type theory”. Licentiate Thesis. Department of Mathematics, Stockholm
University.

de Jong, Tom (2021). “The Scott model of PCF in univalent type theory”. In: Mathematical
Structures in Computer Science 31.10, pp. 1270–1300. DOI: 10.1017/S0960129521000153.

Dybjer, Peter (1995). “Internal Type Theory”. In: Types for Proofs and Programs, International
Workshop TYPES’95, Torino, Italy, June 5-8, 1995, Selected Papers. Ed. by Stefano Berardi
and Mario Coppo. Vol. 1158. Lecture Notes in Computer Science. Springer, pp. 120–
134. DOI: 10.1007/3-540-61780-9_66. URL: https://doi.org/10.1007/
3-540-61780-9%5C_66.

Fiore, Marcelo and Chung-Kil Hur (2010). “Second-order equational logic”. In: Proceed-
ings of the 24th International Conference/19th Annual Conference on Computer Science
Logic. CSL’10/EACSL’10. Brno, Czech Republic: Springer-Verlag, pp. 320–335. ISBN:
364215204X.

Fiore, Marcelo and Ola Mahmoud (2010). “Second-order algebraic theories”. In: Proceed-
ings of the 35th International Conference on Mathematical Foundations of Computer Science.
MFCS’10. Brno, Czech Republic: Springer-Verlag, pp. 368–380. ISBN: 364215154X.

Frey, Jonas (2023). “Duality for Clans: a Refinement of Gabriel-Ulmer Duality”. In: CoRR
abs/2308.11967. DOI: 10.48550/ARXIV.2308.11967. arXiv: 2308.11967. URL:
https://doi.org/10.48550/arXiv.2308.11967.

Gabriel, Peter and Friedrich Ulmer (Jan. 1971). Lokal präsentierbare Kategorien. Lecture
Notes in Mathematics. Springer Berlin, Heidelberg. DOI: https://doi.org/10.
1007/BFb0059396.

Garner, Richard (Dec. 2007). “Understanding the Small Object Argument”. In: Applied
Categorical Structures 17. DOI: 10.1007/s10485-008-9137-4.

Gilbert, Gaëtan, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau (2019). “Defini-
tional proof-irrelevance without K”. In: Proc. ACM Program. Lang. 3.POPL, 3:1–3:28.
DOI: 10.1145/3290316. URL: https://doi.org/10.1145/3290316.

Gratzer, Daniel, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal (July 2021). “Mul-
timodal Dependent Type Theory”. In: Logical Methods in Computer Science Volume
17, Issue 3. ISSN: 1860-5974. DOI: 10.46298/lmcs-17(3:11)2021. URL: http:
//dx.doi.org/10.46298/lmcs-17(3:11)2021.

Gratzer, Daniel and Jonathan Sterling (2020). “Syntactic categories for dependent type
theory: sketching and adequacy”. In: CoRR abs/2012.10783. arXiv: 2012.10783.
URL: https://arxiv.org/abs/2012.10783.

Harper, Robert, Furio Honsell, and Gordon Plotkin (Jan. 1993). “A framework for defin-
ing logics”. In: J. ACM 40.1, pp. 143–184. ISSN: 0004-5411. DOI: 10.1145/138027.
138060. URL: https://doi.org/10.1145/138027.138060.

Haselwarter, Philipp G. and Andrej Bauer (2023). “Finitary Type Theories With and
Without Contexts”. In: J. Autom. Reason. 67.4, p. 36. DOI: 10.1007/S10817-023-
09678-Y. URL: https://doi.org/10.1007/s10817-023-09678-y.

Henry, Simon (2020). The language of a model category. www.uwo.ca/math/faculty/
kapulkin/seminars/hottestfiles/Henry-2020-01-23-HoTTEST.pdf.

Hofmann, Martin (1994). “On the Interpretation of Type Theory in Locally Cartesian
Closed Categories”. In: Computer Science Logic, 8th International Workshop, CSL ’94,
Kazimierz, Poland, September 25-30, 1994, Selected Papers. Ed. by Leszek Pacholski and

https://doi.org/10.1017/S0960129521000153
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1007/3-540-61780-9%5C_66
https://doi.org/10.1007/3-540-61780-9%5C_66
https://doi.org/10.48550/ARXIV.2308.11967
https://arxiv.org/abs/2308.11967
https://doi.org/10.48550/arXiv.2308.11967
https://doi.org/https://doi.org/10.1007/BFb0059396
https://doi.org/https://doi.org/10.1007/BFb0059396
https://doi.org/10.1007/s10485-008-9137-4
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316
https://doi.org/10.46298/lmcs-17(3:11)2021
http://dx.doi.org/10.46298/lmcs-17(3:11)2021
http://dx.doi.org/10.46298/lmcs-17(3:11)2021
https://arxiv.org/abs/2012.10783
https://arxiv.org/abs/2012.10783
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1007/S10817-023-09678-Y
https://doi.org/10.1007/S10817-023-09678-Y
https://doi.org/10.1007/s10817-023-09678-y
www.uwo.ca/math/faculty/kapulkin/seminars/hottestfiles/Henry-2020-01-23-HoTTEST.pdf
www.uwo.ca/math/faculty/kapulkin/seminars/hottestfiles/Henry-2020-01-23-HoTTEST.pdf

BIBLIOGRAPHY 140

Jerzy Tiuryn. Vol. 933. Lecture Notes in Computer Science. Springer, pp. 427–441.
DOI: 10.1007/BFB0022273. URL: https://doi.org/10.1007/BFb0022273.

Hofmann, Martin (July 1995). “Extensional concepts in intensional type theory”. PhD
thesis. University of Edinburgh.

— (1999). “Semantical Analysis of Higher-Order Abstract Syntax”. In: 14th Annual IEEE
Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999. IEEE Computer
Society, pp. 204–213. DOI: 10.1109/LICS.1999.782616. URL: https://doi.
org/10.1109/LICS.1999.782616.

Hofmann, Martin and Thomas Streicher (1997). Lifting Grothendieck Universes.
Hugunin, Jasper (2017). A Coq development of the theory of Indexed W types with function

extensionality. URL: https://github.com/jashug/IWTypes.
Isaev, Valery (2016). “Algebraic Presentations of Dependent Type Theories”. In: CoRR

abs/1602.08504. arXiv: 1602.08504. URL: http://arxiv.org/abs/1602.
08504.

— (2018). “Morita equivalences between algebraic dependent type theories”. In: CoRR
abs/1804.05045. arXiv: 1804.05045. URL: http://arxiv.org/abs/1804.
05045.

Johnstone, Peter T (2002). Sketches of an elephant: a Topos theory compendium. Oxford
logic guides. New York, NY: Oxford Univ. Press. URL: https://cds.cern.ch/
record/592033.

Joyal, Andre (2017). Notes on Clans and Tribes. arXiv: 1710.10238 [math.CT]. URL:
https://arxiv.org/abs/1710.10238.

Kaposi, Ambrus (2017). “Type theory in a type theory with quotient inductive types”.
PhD thesis. University of Nottingham, UK. URL: https : / / ethos . bl . uk /
OrderDetails.do?uin=uk.bl.ethos.713896.

Kaposi, Ambrus, András Kovács, and Thorsten Altenkirch (Jan. 2019). “Constructing
Quotient Inductive-Inductive Types”. In: Proceedings of the ACM on Programming
Languages 3.POPL, pp. 1–24. ISSN: 24751421. DOI: 10.1145/3290315. (Visited on
06/15/2019).

Kaposi, Ambrus and Szumi Xie (2024). “Second-Order Generalised Algebraic Theories:
Signatures and First-Order Semantics”. In: 9th International Conference on Formal
Structures for Computation and Deduction, FSCD 2024, July 10-13, 2024, Tallinn, Esto-
nia. Ed. by Jakob Rehof. Vol. 299. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 10:1–10:24. DOI: 10.4230/LIPICS.FSCD.2024.10. URL: https:
//doi.org/10.4230/LIPIcs.FSCD.2024.10.

Kapulkin, Chris and Peter LeFanu Lumsdaine (Sept. 2016). “The homotopy theory of
type theories”. In: Advances in Mathematics 337. DOI: 10.1016/j.aim.2018.08.
003.

Kovács, András (2022). “Staged compilation with two-level type theory”. In: Proc. ACM
Program. Lang. 6.ICFP, pp. 540–569. DOI: 10.1145/3547641. URL: https://doi.
org/10.1145/3547641.

— (2023). “Type-Theoretic Signatures for Algebraic Theories and Inductive Types”.
PhD thesis. arXiv: 2302.08837. URL: http://arxiv.org/abs/2302.08837.

Kovács, András and Christian Sattler (2025). A Generalized Logical Framework. Work
presented at the EuroProofNet WG6 meeting in Genova in April 2025. URL: https:
//europroofnet.github.io/wg6-genoa/.

Laurent, Théo, Meven Lennon-Bertrand, and Kenji Maillard (2024). “Definitional Func-
toriality for Dependent (Sub)Types”. In: Programming Languages and Systems - 33rd
European Symposium on Programming, ESOP 2024, Held as Part of the European Joint Con-

https://doi.org/10.1007/BFB0022273
https://doi.org/10.1007/BFb0022273
https://doi.org/10.1109/LICS.1999.782616
https://doi.org/10.1109/LICS.1999.782616
https://doi.org/10.1109/LICS.1999.782616
https://github.com/jashug/IWTypes
https://arxiv.org/abs/1602.08504
http://arxiv.org/abs/1602.08504
http://arxiv.org/abs/1602.08504
https://arxiv.org/abs/1804.05045
http://arxiv.org/abs/1804.05045
http://arxiv.org/abs/1804.05045
https://cds.cern.ch/record/592033
https://cds.cern.ch/record/592033
https://arxiv.org/abs/1710.10238
https://arxiv.org/abs/1710.10238
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.713896
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.713896
https://doi.org/10.1145/3290315
https://doi.org/10.4230/LIPICS.FSCD.2024.10
https://doi.org/10.4230/LIPIcs.FSCD.2024.10
https://doi.org/10.4230/LIPIcs.FSCD.2024.10
https://doi.org/10.1016/j.aim.2018.08.003
https://doi.org/10.1016/j.aim.2018.08.003
https://doi.org/10.1145/3547641
https://doi.org/10.1145/3547641
https://doi.org/10.1145/3547641
https://arxiv.org/abs/2302.08837
http://arxiv.org/abs/2302.08837
https://europroofnet.github.io/wg6-genoa/
https://europroofnet.github.io/wg6-genoa/

BIBLIOGRAPHY 141

ferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg,
April 6-11, 2024, Proceedings, Part I. Ed. by Stephanie Weirich. Vol. 14576. Lecture Notes
in Computer Science. Springer, pp. 302–331. DOI: 10.1007/978-3-031-57262-
3_13. URL: https://doi.org/10.1007/978-3-031-57262-3%5C_13.

Lawvere, F. William (1963). “Functorial Semantics of Algebraic Theories and Some
Algebraic Problems in the context of Functorial Semantics of Algebraic Theories”.
PhD thesis. Columbia University.

Lumsdaine, Peter LeFanu and Michael A. Warren (2015). “The Local Universes Model:
An Overlooked Coherence Construction for Dependent Type Theories”. In: ACM
Trans. Comput. Log. 16.3, 23:1–23:31. DOI: 10.1145/2754931. URL: https://doi.
org/10.1145/2754931.

Makkai, Michael (1995). “First Order Logic with Dependent Sorts, with Applications to
Category Theory”.

Makkai, Michael, Jiří Rosický, and Lukáš Vokřínek (2014). “On a fat small object argu-
ment”. In: Advances in Mathematics 254, pp. 49–68. ISSN: 0001-8708. DOI: https://
doi.org/10.1016/j.aim.2013.12.012. URL: https://www.sciencedirect.
com/science/article/pii/S0001870813004581.

McBride, Conor and Ross Paterson (2008). “Applicative programming with effects”.
In: J. Funct. Program. 18.1, pp. 1–13. DOI: 10.1017/S0956796807006326. URL:
https://doi.org/10.1017/S0956796807006326.

Moeneclaey, Hugo (2022). “Cubical models are cofreely parametric”. PhD thesis. Univer-
sité Paris Cité.

Moura, Leonardo de and Sebastian Ullrich (2021). “The Lean 4 Theorem Prover and
Programming Language”. In: Automated Deduction – CADE 28. Ed. by André Platzer
and Geoff Sutcliffe. Cham: Springer International Publishing, pp. 625–635. ISBN: 978-
3-030-79876-5. URL: https://link.springer.com/chapter/10.1007/978-
3-030-79876-5_37.

Orton, Ian and Andrew M. Pitts (2018). “Axioms for Modelling Cubical Type Theory in a
Topos”. In: Log. Methods Comput. Sci. 14.4. DOI: 10.23638/LMCS-14(4:23)2018.
URL: https://doi.org/10.23638/LMCS-14(4:23)2018.

Pfenning, Frank and Carsten Schürmann (1999). “System Description: Twelf - A Meta-
Logical Framework for Deductive Systems”. In: Automated Deduction - CADE-16,
16th International Conference on Automated Deduction, Trento, Italy, July 7-10, 1999,
Proceedings. Ed. by Harald Ganzinger. Vol. 1632. Lecture Notes in Computer Science.
Springer, pp. 202–206. ISBN: 3-540-66222-7. DOI: 10.1007/3-540-48660-7_14.
URL: https://doi.org/10.1007/3-540-48660-7%5C_14.

Pientka, Brigitte (2010). “Beluga: Programming with Dependent Types, Contextual Data,
and Contexts”. In: Functional and Logic Programming, 10th International Symposium,
FLOPS 2010, Sendai, Japan, April 19-21, 2010. Proceedings. Ed. by Matthias Blume,
Naoki Kobayashi, and Germán Vidal. Vol. 6009. Lecture Notes in Computer Science.
Springer, pp. 1–12. ISBN: 978-3-642-12250-7. DOI: 10.1007/978-3-642-12251-
4_1. URL: https://doi.org/10.1007/978-3-642-12251-4%5C_1.

Rosolini, Giuseppe (Jan. 1986). “Continuity and effectiveness in topoi”. PhD thesis.
Sattler, Christian (2018). “Normalization by evaluation for categories with families”.
Shulman, Mike (Aug. 2017). “Brouwer’s fixed-point theorem in real-cohesive homotopy

type theory”. In: Mathematical Structures in Computer Science 28.6, pp. 856–941. ISSN:
1469-8072. DOI: 10.1017/s0960129517000147. URL: http://dx.doi.org/
10.1017/S0960129517000147.

https://doi.org/10.1007/978-3-031-57262-3_13
https://doi.org/10.1007/978-3-031-57262-3_13
https://doi.org/10.1007/978-3-031-57262-3%5C_13
https://doi.org/10.1145/2754931
https://doi.org/10.1145/2754931
https://doi.org/10.1145/2754931
https://doi.org/https://doi.org/10.1016/j.aim.2013.12.012
https://doi.org/https://doi.org/10.1016/j.aim.2013.12.012
https://www.sciencedirect.com/science/article/pii/S0001870813004581
https://www.sciencedirect.com/science/article/pii/S0001870813004581
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1017/S0956796807006326
https://link.springer.com/chapter/10.1007/978-3-030-79876-5_37
https://link.springer.com/chapter/10.1007/978-3-030-79876-5_37
https://doi.org/10.23638/LMCS-14(4:23)2018
https://doi.org/10.23638/LMCS-14(4:23)2018
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/3-540-48660-7%5C_14
https://doi.org/10.1007/978-3-642-12251-4_1
https://doi.org/10.1007/978-3-642-12251-4_1
https://doi.org/10.1007/978-3-642-12251-4%5C_1
https://doi.org/10.1017/s0960129517000147
http://dx.doi.org/10.1017/S0960129517000147
http://dx.doi.org/10.1017/S0960129517000147

BIBLIOGRAPHY 142

Shulman, Mike (Sept. 2018). A Communal Proof of an Initiality Theorem. URL: https:
//golem.ph.utexas.edu/category/2018/09/a_communal_proof_of_
an_initial.html.

Sterling, Jonathan (Apr. 2022). “First Steps in Synthetic Tait Computability: The Objective
Metatheory of Cubical Type Theory”. Thesis. Carnegie Mellon University. DOI:
10.1184/R1/19632681.v1. (Visited on 06/04/2024).

Sterling, Jonathan and Carlo Angiuli (2021). “Normalization for Cubical Type Theory”.
In: 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome,
Italy, June 29 - July 2, 2021. IEEE, pp. 1–15. DOI: 10.1109/LICS52264.2021.
9470719. URL: https://doi.org/10.1109/LICS52264.2021.9470719.

Streicher, Thomas (1991). Semantics of Type Theory: Correctness, Completeness, and Indepen-
dence Results. Birkhäuser Boston, MA.

Swan, Andrew (2018). Identity Types in Algebraic Model Structures and Cubical Sets. arXiv:
1808.00915 [math.CT]. URL: https://arxiv.org/abs/1808.00915.

Taylor, Paul (1999). Practical Foundations Of Mathematics. ISBN: 0-521-63107-6.
The Rocq Development Team (Apr. 2025). The Rocq Prover. Version 9.0. DOI: 10.5281/

zenodo.15149629. URL: https://doi.org/10.5281/zenodo.15149629.
Uemura, Taichi (2019). “A General Framework for the Semantics of Type Theory”. In:

CoRR abs/1904.04097. arXiv: 1904.04097. URL: http://arxiv.org/abs/1904.
04097.

— (2021). “Abstract and concrete type theories”. PhD thesis. Amsterdam: Institute for
Logic, Language and Computation. URL: https://hdl.handle.net/11245.1/
41ff0b60-64d4-4003-8182-c244a9afab3b.

Univalent Foundations Program, The (2013). Homotopy Type Theory: Univalent Foundations
of Mathematics. Institute for Advanced Study: https://homotopytypetheory.
org/book.

Voevodsky, Vladimir (2014). B-systems. arXiv: 1410.5389 [math.LO]. URL: https:
//arxiv.org/abs/1410.5389.

— (2016). Subsystems and regular quotients of C-systems. arXiv: 1406.7413 [math.LO].
URL: https://arxiv.org/abs/1406.7413.

https://golem.ph.utexas.edu/category/2018/09/a_communal_proof_of_an_initial.html
https://golem.ph.utexas.edu/category/2018/09/a_communal_proof_of_an_initial.html
https://golem.ph.utexas.edu/category/2018/09/a_communal_proof_of_an_initial.html
https://doi.org/10.1184/R1/19632681.v1
https://doi.org/10.1109/LICS52264.2021.9470719
https://doi.org/10.1109/LICS52264.2021.9470719
https://doi.org/10.1109/LICS52264.2021.9470719
https://arxiv.org/abs/1808.00915
https://arxiv.org/abs/1808.00915
https://doi.org/10.5281/zenodo.15149629
https://doi.org/10.5281/zenodo.15149629
https://doi.org/10.5281/zenodo.15149629
https://arxiv.org/abs/1904.04097
http://arxiv.org/abs/1904.04097
http://arxiv.org/abs/1904.04097
https://hdl.handle.net/11245.1/41ff0b60-64d4-4003-8182-c244a9afab3b
https://hdl.handle.net/11245.1/41ff0b60-64d4-4003-8182-c244a9afab3b
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://arxiv.org/abs/1410.5389
https://arxiv.org/abs/1410.5389
https://arxiv.org/abs/1410.5389
https://arxiv.org/abs/1406.7413
https://arxiv.org/abs/1406.7413

	Introduction
	Conservativity conjectures
	Type theory as algebraic theories
	Algebraic theories and generalizations
	Generalized algebraic presentations of type theories
	Second-order algebraic theories and higher-order abstract syntax
	Other general definitions of dependent type theory

	The metatheory of type theories, algebraically
	Other approaches

	Overview of the thesis
	A 1-categorical presentation of functorial semantics
	Reduction from SOGATs to GATs
	Internal algebras of SOGATs and relative induction principles
	Applications of relative induction principles

	Categorical preliminaries
	Notations and required background
	Displayed categories
	Categories of presheaves and their internal language
	Multimodal type theory
	Axiomatization in multimodal type theory
	Universes in presheaf categories
	Local representability
	Levelwise decidable propositions

	Factorization systems

	Categorical models of type theory
	Categories with families
	Categories with families
	Contextuality
	Democracy
	Trivial fibrations
	Renamings

	Type structures
	Dependent sums
	Equality types
	Dependent products
	Correspondences with classes of categories

	CwFs with first-order dependent products
	Definition
	Pseudo-morphisms
	CwFs with base types

	First-order generalized algebraic theories
	Definition and examples
	Functorial semantics
	Categories of algebras
	The reflective embedding of algebras into presheaves
	Displayed algebras
	Adjunction induced by GAT morphisms

	Internal algebras
	Definitions
	CwFs of internal algebras

	Finitely generated algebras
	Trivial fibrations
	Congruences and fibrant congruences

	Second-order generalized algebraic theories
	Definition and examples
	Functorial semantics and reduction to GATs
	Contextual algebras
	Explicit description of the contextual core
	The GAT of contextual algebras

	Relative induction principles
	Contextualization
	Displayed contextualization

	Application: canonicity
	The canonicity higher-order model
	The canonicity result

	Relative induction principles
	Relative induction principle over renamings

	Application: normalization for MLTT and decidability of equality
	Normal forms
	The normalization displayed higher-order model
	Normalization function
	Uniqueness of normal forms
	Decidability of equality

	Application: normalization for extensions of MLTT
	Extension: Strict algebras
	Extension: Strict functoriality
	Discussion: normalization in presence of non-linear equations

	Application: conservativity of two-level type theory

	Equalities in the total spaces of indexed W-types
	Endofunctors
	Indexed containers

