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Abstract. We give a new constructive proof of homotopy canonicity for homotopy type
theory (HoTT). Canonicity proofs typically involve gluing constructions over the syntax of
type theory. We instead use a gluing construction over a “strict Rezk completion” of the
syntax of HoTT. The strict Rezk completion is specified and constructed in the topos of
cartesian cubical sets. It completes a model of HoTT to an equivalent model satisfying
a completeness condition, providing an equivalence between terms of identity types and
cubical paths between terms. This generalizes the ordinary Rezk completion of a 1-category.

1. Introduction

Voevodsky conjectured (Voevodsky 2010) that the extension of Martin-Löf Type Theory
(MLTT) with his univalence axiom remains constructive. More precisely, homotopy canonicity
for Homotopy Type Theory (HoTT) is the statement that any closed term of the type of
natural numbers in the syntax of HoTT is identifiable with a numeral, where the identification
is witnessed by some closed term of the identity type.

Strict canonicity for Martin-Löf Type Theory can be proven by a model construction
known as categorical gluing. It involves gluing together the syntax of MLTT with the category
of sets. The gluing is specified by the global sections functor, which assigns to every syntactic
context its set of closing substitutions (gluing along the global sections functor is also called
sconing). For proofs of homotopical properties of the syntax, such as homotopy canonicity
for HoTT, the set-valued global sections functor should be replaced by a homotopical global
sections functor, valued in ∞-groupoids (or spaces). However, coherence issues arise, as the
syntax has a strict underlying 1-category S, while∞-groupoids form an∞-category (perhaps
presented by some 1-category, such as simplicial sets with the Kan-Quillen model structure).

For any syntactic context Γ ∈ S, one wishes to define an ∞-groupoid of closing substitu-
tions into Γ. Its set of objects should be the set S(1S ,Γ) of closing substitutions, but the
higher cells should be given by iterated identity types S(1S , IdΓ(−,−)), etc. Unfortunately,
defining these spaces in a way that is strictly functorial in Γ, e.g. a functor S → sSet, does
not seem possible as a direct construction.

Sattler and Kapulkin (2019) obtained a proof of homotopy canonicity for HoTT, although
the details of the proof have not been made public yet. Their strategy is to present the
homotopical global sections functor using a span

S ← Fr(S)→ sSet.
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Here Fr(S) is the frame model over S, the homotopical inverse diagram model indexed by
the semi-simplex category ∆+. The frame model extends the syntax with more data, and
this additional data allows for the definition of a strict functor Fr(S) → sSet. The map
Fr(S)→ S is a weak equivalence of models, ensuring that the span morally corresponds to
a functor S → sSet. Using simplicial sets leads to a non-constructive proof of homotopy
canonicity, but a constructive proof can be achieved by gluing along some more complex
functor Fr(S)→ cSetdM into (De Morgan) cubical sets.

In this paper, we propose another way to solve the issue of the definition of a homotopical
global sections functor. We work internally to the topos cSet of cartesian cubical sets. In
the internal language of this topos, we have a notion of fibrant set; the fibrant sets can be
seen as ∞-groupoids. This topos has been equipped with the structure of a model of HoTT
with universes classifying the fibrant sets by Angiuli et al. (2021). There is an internal copy
of the syntax S of HoTT; its components (sets of contexts, substitutions, etc.) are fibrant
but have the “wrong” homotopy types (they are 0-truncated and ignore the ambient cubical
setting). We will define another internal model S with the following properties:
• The components of S are fibrant; i.e. they can be seen as ∞-groupoids.
• There is a morphism i : S → S of models of HoTT. Furthermore, after externalization

(restriction to the empty cubical context), i becomes a weak equivalence of models of
HoTT.
• The model S is complete, meaning that its components have the correct homotopy types;

in particular we have equivalences

(x ∼ y) ≃ S.Tm(Γ, IdA(x, y)),

where (x ∼ y) is the set of paths between x and y in S.Tm(Γ, A). More precisely, the
(fibrant) set

(y : S.Tm(Γ, A))× S.Tm(Γ, IdA(x, y))

should be contractible for any term x.
Once this model S is constructed, we have, still internally to cartesian cubical sets, a

well-behaved homotopical global sections functor, sending a syntactic context Γ to the fibrant
set S(1, i(Γ)). Homotopy canonicity for S then follows from a standard gluing argument. In
the strict canonicity proof for MLTT, a closed type A is sent to a unary logical predicate

JAK : S.Tm(1, A)→ Set.

For the homotopy canonicity proof, we instead interpret a closed type A as a logical predicate

JAK : S.Tm(1, i(A))→ Setfib

valued in fibrant sets.
We call S the strict Rezk completion of S. Indeed, its specification is closely related

to the specification of Rezk completions of categories (Ahrens, Kapulkin, and Shulman 2015).
If C is a category in HoTT (meaning that the categorical laws hold up to identification),
then its Rezk completion is a category C satisfying the following properties:
• There is a weak equivalence F : C → C (a functor that is essentially surjective and fully

faithful).
• The category C is complete (or univalent): objects of C have the correct homotopy types;

in particular we have equivalences

(x ∼ y) ≃ IsoC(x, y)
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between identifications in ObC and isomorphisms. This is alternatively expressed by asking
for the contractibility of (y : ObC)× IsoC(x, y).

Strict Rezk completion differs from the ordinary Rezk completion for categories. The
ordinary Rezk completion can be specified (and constructed) fully in HoTT; the categorical
and functorial laws are then expressed using identifications in HoTT. The strict Rezk
completion cannot be specified in HoTT: it needs a notion of strict equality (available in
cubical sets, and more generally in models of two-level type theory (Annenkov, Capriotti,
Kraus, and Sattler 2023)). This is crucial, because it seems that the notion of model of
HoTT cannot be expressed without either strict equalities, or an infinite tower of additional
coherence data. Kraus (2021) explains that internally to HoTT, neither set-truncated nor
wild models are well-behaved.

Strict Rezk completions can be specified not only for models of HoTT, but also for the
categories of algebras of generalized algebraic theories with a suitable homotopy theory. In
this paper, we consider the case of 1-categories with the canonical model structure, and models
of HoTT with an algebraic variant of the left semi-model structure introduced by Kapulkin
and Lumsdaine (2018). We leave generalization to other generalized algebraic theories to
future work; we expect that our construction of the strict Rezk completion should work for
generalized algebraic theories whose category of models is equipped with a “pseudo-cylindrical
left semi-model structure”.

The main idea behind the construction of the strict Rezk completion is to reformulate the
notion of completeness in a way that interacts well with the cubical structure. Completeness
is defined using contractibility conditions, and in cubical presheaf models, the notion of
contractibility can be expressed in two ways:
(1) Using the usual definition from HoTT:

isContr(X) ≜ (x : X)× (∀y → x ∼ y).

(2) Using the cubical structure: contractibility corresponds to trivial fibrancy; a set is
trivially fibrant if any partial element can be extended to a total element.
For fibrant sets, both definitions are logically equivalent. For sets that are not yet known

to be fibrant, (2) behaves better.
Our definition of the strict Rezk completion relies on the notion of trivial fibrancy: the

strict Rezk completion C of a category C is defined as the free extension of C by extension
structures for the sets (y : ObC) × IsoC(x, y). We then have to prove that this category
has fibrant components and that the externalization of the functor i : C → C is a weak
equivalence. This generalizes a construction by Cherubini, Coquand, and Hutzler (2023) of
the propositional truncation without homogeneous fibrant replacement in cubical sets. In
fact, their construction of the propositional truncation can be seen as the simplest example
of a strict Rezk completion (for the category of sets, equipped with a homotopy theory
presenting the propositions).

Related work. This work builds upon the axiomatic development the semantics of cubical
type theories (Cohen, Coquand, Huber, and Mörtberg 2017) in the internal language of
toposes (Orton and Pitts 2016; Licata, Orton, Pitts, and Spitters 2018; Angiuli et al. 2021;
Cavallo, Mörtberg, and Swan 2020). The definition of the strict Rezk completion using trivial
fibrancy is related to Glue-types and to the equivalence extension property. The proof of
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fibrancy of the components of the strict Rezk completion is similar to the proof of fibrancy
of the universes in the cubical presheaf models.

We also rely on the left-semi model structure on categories of models of type theories
from Kapulkin and Lumsdaine 2018, and on homotopical inverse diagram models (Kapulkin
and Lumsdaine 2021). This left semi-model structure presents an∞-category of models. The
∞-type theories of Nguyen and Uemura (2022) have ∞-categories of space-valued models,
but relating these space-valued models to the set-valued models of a 1-type theory is not easy.
The strict Rezk completion is a way to relate set-valued models and space-valued models of
type theory, without using ∞-categorical tools.

Some canonicity and normalization results have previously been obtained for type theories
with univalent universes. A homotopy canonicity result for a 1-truncated type theory with a
univalent universe of sets has been obtained by Shulman (2014). Strict canonicity for cubical
type theory was first proven by Huber (2019). Coquand, Huber, and Sattler (2022) have
used gluing constructions to prove homotopy and strict canonicity for cubical type theory.
Normalization for cubical type theory has been proven by Sterling and Angiuli (2021). For
cubical type theory, taking a strict Rezk completion of the syntax is not needed, because the
cubical structure of the syntax automatically endows it with the correct higher dimensional
structure.

Outline. We begin in section 2 by reviewing the axiomatization of Angiuli et al. (2021)
of the cartesian cubical set model in the internal language of a topos. We use the notion
of weak composition structure due to Cavallo, Mörtberg, and Swan (2020). In section 3
we specify and construct the strict Rezk completion for 1-categories. The goal to show the
main ideas of this work in a relatively simple setting; the construction of the strict Rezk
completion for models of HoTT will follow the same structure.

In section 4 we detail the semantics of our variant of HoTT, which has a cumulative
hierarchy of univalent universes, Σ-types, Π-types, booleans, unit-types, empty-types and
W -types. We also define part of the homotopy theory of models of HoTT, following Kapulkin
and Lumsdaine (2018). In particular, path models and reflexive-loop models, which are
instances of homotopical inverse diagram models (Kapulkin and Lumsdaine 2021), play an
important role. Then in section 5 we specify and construct the strict Rezk completion for
models of HoTT.

Finally, in section 6, we prove homotopy canonicity for HoTT, relying on the strict Rezk
completion of the syntax.

Agda formalization. The constructions of path and reflexive-loop models of
HoTT, appearing in subsection 4.6, have been partly formalized in Agda.
The formalization is available at https://rafaelbocquet.gitlab.io/Agda/20230925_
StrictRezkCompletionsAndHomotopyCanonicity/, and in the ancillary files attached to
the arXiv submission of the paper.

Acknowledgments. I thank Christian Sattler for discussions about this work. His comments
on an early draft of this paper have led to simplifications of the proof methods.
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2. Background: cartesian cubical sets

Most of our development takes place internally to the topos cSet of presheaves over the
cartesian cube category □. We use the notion of weak composition structure from Cavallo,
Mörtberg, and Swan (2020), but we also rely on diagonal cofibrations, so our development is
valid in cartesian cubical sets but not in De Morgan cubical sets.

We recall the cubical structure that is available in the internal language of cartesian
cubical sets.

2.1. Interval and cofibrations. There is an interval I : Set, with two points 0, 1 : I such
that 0 ̸= 1.

There is set Cof of cofibrations. Every cofibration α has an associated proposition
[α] : Ω.

Cofibrations are closed under interval equalities (i = j), binary and nullary conjunc-
tions ((α∧β) and ⊤), binary and nullary disjunctions ((α∨β) and ⊥) and quantification
over the interval (∀i : I.α(i)).

Moreover, we assume that cofibrations are inductively generated by interval equali-
ties, binary conjunctions and binary disjunctions. We will need to make use of that fact
in subsection 2.7, to justify that the notion of partial element is finitary.

Diagonal cofibrations (interval equalities that are not of the form (i = ε) for ε ∈ {0, 1})
are only used in the proofs of Proposition 3.28 and Proposition 5.8.

Given a cofibration α and a set X, an element x : [α] → X is said to be a partial
element of X. In that case, a total element x′ : X is said to extend x if [α] implies that
x = x′. We write {X | α ↪→ x} for the set of total elements of X extending x.

A partial element in [α]→ X may be written [α 7→ x]. When α is a disjunction (ϕ ∨ ψ),
we may write [ϕ 7→ xϕ, ψ 7→ xψ] for the unique element of [ϕ ∨ ψ]→ X that restrict to xϕ
under ϕ and xψ under ψ, assuming [ϕ ∧ ψ]→ (xϕ = xψ). We write [] for the unique element
of [⊥]→ X.

Let A : I→ Set be a line of sets with two points x0 : A(0) and x1 : A(1). A dependent
path p : x0 ∼A x1 is a map p : (i : I) → A(i) such that p(0) = x0 and p(1) = x1. A
non-dependent path in A : Set is a path over the constant line (λ_ 7→ A).

We will use the symbols (∼) for paths, (≃) for equivalences, and (∼=) for isomorphisms.

2.2. Global elements. When X is a global set in the internal language of cSet, we write
1∗□(X) for the external set of global elements of X. This can also be identified with the
evaluation of X at the terminal object 1□ of the cartesian cube category. The interaction
between internal and external reasoning could also be expressed using modalities, e.g. either
crisp type theory (Shulman 2018) or the dependent right adjoint (Birkedal et al. 2020)
corresponding to the inverse image 1∗□ : cSet→ Set.

We also rely on 1∗□ being a functor preserving finite limits; in particular it acts on
algebras and homomorphisms of any essentially algebraic theory, e.g. if C is an internal
category, then 1∗□(C) is an external category.

We also assume that 1∗□(Cof)
∼= {true, false}, and that the corresponding map [−] :

{true, false} → 1∗□(Ω) selects the propositions ⊤ and ⊥. Indeed, the only sieves over the
terminal object 1□ of the cartesian cube category are ⊤ and ⊥.
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2.3. Tinyness of the interval. The interval is tiny, which means that the exponentiation
functor (−)I : cSet → cSet has a right adjoint (−)I : cSet → cSet. This is an external
statement; the right adjoint cannot be accessed internally. Most of the time, we don’t use
the right adjoint directly. Instead, we use the following consequence:

Lemma 2.1 (Coquand, Huber, and Sattler 2022, Lemma 2.2). Let A be a global set and B
be a global family over AI. Then we have a global family BI over A with a bijection of global
elements

1∗□((a : X)→ BI(f(a))) ∼= 1∗□((a : XI)→ B(f ◦ a))
natural in global f : X → A.

The construction (−)I may be chosen so that:
(1) If B is i-small, then so is BI.
(2) The induced isomorphism (λa→ B(f ◦ a))I ∼= (BI ◦ f) is the identity.

Remark that both (−)I and (−)I are right adjoint functors, thus preserving all limits.
This entails that the endo-adjunction descends to an endo-adjunction ((−)I ⊣ (−)I) on the
category of cubical algebras of any essentially algebraic theory. Moreover, the actions of (−)I
and (−)I on algebras can be computed sortwise.

Indeed, from the point of view of functorial semantics in finitely complete categories, a
cubical T -algebra is a left exact functor T → cSet. The functors (−)I and (−)I then act by
post-composition.

2.4. Kan operations. We review the definitions and properties of the Kan operations,
which are used to define the notions of fibrancy and trivial fibrancy. We use the notion of
weak composition structure due to Cavallo, Mörtberg, and Swan (2020).

Definition 2.2. A weak composition structure for A : I→ Set consists of:
• For every r, s : I, α : Cof, t : [α] → (s : I) → A(s) and b : A(r) such that [α] → t(r) = b,

there is an element
wcomr→s

A (t, b) : A(s)

such that [α]→ wcomr→s
A (t, b) = t(s).

• There is a family of paths

wcomr
A(t, b) : wcom

r→r
A (t, b) ∼ b

such that [α]→ wcomr
A(t, b) = (λ_ 7→ b).

This defines a global family HasWCom : SetI → Set. We obtain a global family
HasWComI : Set → Set by Lemma 2.1. Elements of HasWComI(X) are called fibrancy
structures over X, and sets equipped with a fibrancy structure are called fibrant sets.

Lemma 2.1 provides a global map

ϵ : (X : I→ Set)(Xfib : (i : I)→ HasWComI(X(i)))→ HasWCom(X),

which is essentially the counit of the adjunction ((−)I ⊣ (−)I). This justifies using the
notations wcomi.X(i) and wcomi.X(i) whenever X is a line of fibrant sets.

The notion of weak composition structure can be reformulated in terms of limits and
split surjections, this will be used in the proof of Lemma 3.27.
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Lemma 2.3. A line A : I→ Set has a weak composition structure if and only for every r : I
and α : Cof the map

(b : A(r))× (w : (s : I)→ {A(s) | [α ∧ (s = r)] ↪→ b})× {w : w(r) ∼ b | [α] ↪→ (λ_ 7→ b)}
→ (b : A(r))× (t : [α]→ (s : I)→ {A(s) | [s = r] ↪→ b}),

(b, w,w) 7→ (b, λs 7→ w(s)).

is a split surjection.

Definition 2.4. An extension structure for a set X is the data, for every α : Cof and
partial element x : [α]→ X, of a total element

extX(x) : {X | α ↪→ x}.

We write HasExt for the family of extension structures. A set equipped with an extension
structure is said to be trivially fibrant.

In cubical models, a fibrant set is contractible if and only if it has an extension structure.
For non-fibrant sets, or sets that are not yet known to be fibrant, extension structure are
better behaved than the usual definition of contractibility.

Proposition 2.5 (Cohen, Coquand, Huber, and Mörtberg 2017, Lemma 5). For any set X,
there is a logical equivalence

HasExt(X)↔ (HasWComI(X)× isContr(X)),

where
isContr(X) = (x : X)× ((y : X)→ (x ≃ y)).

In other words, a set is trivially fibrant if and only if it is fibrant and contractible.

Proof. We prove both implications.
(⇐): Assume that X is fibrant and contractible. We equip X with an extension structure.

Take a partial element x : [α]→ X. Write x0 : X for the center of contraction of X.
Since X is contractible, we have a partial path p : [α]→ x0 ≃ x.

Now extX(x) ≜ wcom0→1
X ([α i 7→ p(i)], x0) is a total element extending x.

(⇐): Assume that X has an extension structure.
We first prove that X is contractible. We can find a center of contraction ext([]) by

extending the empty partial element. Given x : X, y : X and i : I, we can define an
element p(i) = ext([(i = 0) 7→ x, (i = 1) 7→ y]). Then p : I→ X is a path between x
and y, as needed

We now prove that X is fibrant, by defining a global map

(X : Set)× HasExt(X)→ HasWComI(X).

By Lemma 2.1, it suffices to construct a map

(X : SetI)× (extX(−) : (i : I)→ HasExt(X(i)))→ HasWCom(X).

We pose

wcomr→s
X (t, b) ≜ extX(s)([α 7→ t(s)]),

wcomr
X(t, b, i) ≜ extX(r)([α 7→ b, (i = 0) 7→ wcomr→r

X (t, b), (i = 1) 7→ b]).

One can check that the necessary boundary conditions are satisfied.
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2.5. Fibrancy from reflexive graphs and pseudo-reflexive graphs. For a universe
level n, the universe Setfibn of n-small fibrant sets is defined as

Setfibn ≜ (A : Setn)× HasWComI(A).

As shown by Cavallo, Mörtberg, and Swan (2020), it is univalent and closed under
Π-types, Σ-types, Path-types, Glue-types, etc.

The proof of fibrancy of the universe factors through the proof of the equivalence
extension property, which follows from the construction of Glue-types. The equivalence
extension property says that the set

(B : Setfib)× Equiv(A,B)

is trivially fibrant for any A : Setfib i.e. that we have an extension structure for equivalences
with a fixed left endpoint.

The fibrancy of the universe then follows from the following lemma, instantiated at
A = Setfib, EA = Equiv and r(A) = idA.

Lemma 2.6. Take a global reflexive graph with vertices A : Set, edges EA : V → V → Set
and reflexivity map r : (a : A) → EA(a, a). Assume that the following two conditions are
satisfied:
A has a weak coercion structure: For every line a : I→ V , we have operations

wcoer→s
a : EA(a(r), a(s))

and
wcohra : (wcoe

r→r
a = r(a)).

A is homotopical: For every a1 : A, the set

(a2 : A)× EA(a1, a2)
is trivially fibrant.

Then V is fibrant.

Proof. Proof omitted, we prove a more general version in Lemma 2.7.

We give a generalization of that proof of fibrancy. A pseudo-reflexive graph object in a
category is a diagram indexed by the category

R E V,
pe p1

p2

with p1 ◦ pe = p2 ◦ pe.
This category is an inverse replacement of the indexing category for reflexive graphs.

The object V corresponds to vertices, the object E corresponds to edges, and the object R
corresponds to reflexive loops. A reflexive graph is exactly a pseudo-reflexive graph (V,E,R)
such that V = R.

A pseudo-reflexive graph in Set is a triple (A,EA, RA), where

A : Set,

EA : (a1 : A)(a2 : A)→ Set,

RA : (a : A)(ae : EA(a, a))→ Set.

Throughout the paper, we will use the same notations when quantifying over the elements
of a pseudo-reflexive graph (a : A, ae : EA(a1, a2) and ar : RA(a, ae)). We may implicitly
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quantify over some elements, e.g. quantifying over ae : EA(a1, a2) may implicitly quantify
over a1, a2 : A.

Lemma 2.7. Assume given the data of a global dependent pseudo-reflexive graph (B,EB, RB)
over a base pseudo-reflexive graph (A,EA, RA):

A : Set,

EA : A→ A→ Set,

RB : (a : A)(ae : EA(a, a))→ Set,

B : A→ Set,

EB : EA(a1, a2)→ B(a1)→ B(a2)→ Set,

RB : RA(a, ae)→ (b : B(a))(be : EB(ae, b, b))→ Set.

We also assume (globally) the following conditions:
A and B have weak coercion structures: For any a : I→ A, we have

wcoer→s
a : EA(a(r), a(s))

and
wcohra : RA(a,wcoe

r→r
a )

and for any b : (i : I)→ B(a(i)) we have

wcoer→s
b : EB(wcoe

r→s
a , b(r), b(s))

and
wcohrb : RB(wcoh

r
a, b,wcoe

r→r
b ).

B is homotopical: For any b1 : B(a1) and ae : EA(a1, a2), the set

(b2 : B(a(s)))× (be : EB(ae, b, be))

is trivially fibrant, and that for any b : B(a) and ar : RA(a, ae), the set

(be : EB(ae, b, b))× (br : RB(ar, b, be))

is trivially fibrant.
Then B is a family of fibrant sets.

Proof. By Lemma 2.1, it suffices to construct a global element of (a : AI)→ HasWCom(λi 7→
B(a(i))).

Take r : I, a cofibration α : Cof and elements t : [α]→ (s : I)→ B(a(s)) and b : B(a(r))
such that [α]→ t(r) = b. We use the homotopicality of B to extend some partial elements.

Given s : I, we let w(s) be an element of (b2 : B(a(s))) × (be : EB(wcoe
r→s
a , b, be))

extending the partial element
[α 7→ (t(s),wcoer→s

t )].

We let d be an element of (be : EB(wcoer→r
a , b, b))× (br : RB(wcoh

r
a, b, be)) extending

[α 7→ (wcoer→r
t ,wcohrt )].

Given i : I, we let w(i) be an element of (b2 : B(a(r))) × (be : EB(wcoe
r→r
a , b, be))

extending
[α 7→ (t(r),wcoer→r

t ), (i = 0) 7→ w(s), (i = 1) 7→ (b, d.1)].
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We can then define a weak composition structure as follows:

wcomr→s
B(a(−))(t, b) = w(s).1,

wcomr
B(a(−))(t, b, i) = w(i).1.

2.6. Propositional truncation without homogeneous fibrant replacement. The
propositional truncation of a fibrant set can be defined as a higher inductive type. The
semantics of higher inductive types in cSet involves a set freely generated by the constructors
of the higher inductive type and additional constructors ensuring fibrancy (a form of fibrant
replacement).

As observed by Cherubini, Coquand, and Hutzler (2023), the propositional truncation
can actually be defined without fibrant replacement, when trivial fibrancy is used to express
propositionality (recall that isProp(X)↔ (X → isContr(X))).

We recall how to perform this construction (in the simpler case of global sets).

Theorem 2.8 (Cherubini, Coquand, and Hutzler 2023). Let X be a global fibrant set and X
be the set freely generated by a map i : X → X and by an element of X → HasExt(X), i.e.
an operation

ext : (x : X) (α : Cof) (y : [α]→ X)→ {X | α ↪→ y}.

Then X is fibrant and i is surjective (up to paths), i.e. X is a propositional truncation
of X.

Proof. We first prove the fibrancy, i.e. we construct an element of HasWComI(X). By Lemma 2.1,
it suffices to construct an element of HasWCom(λ_ 7→ X). This weak composition structure
is defined as follows:

wcomr→s
X

(t, b) ≜ ext(b, [α 7→ t(s)]),

wcomr
X
(t, b) ≜ ext(b, [α 7→ t(s), (i = 0) 7→ wcomr→s

X
(t, b), (i = 1) 7→ b]).

Alternatively, we could have used Lemma 2.7, with A = 1, B = X, EB(−) = 1 and
RB(−) = 1.

Since X is fibrant, we can also construct its propositional truncation ∥ X ∥ as usual.
The universal properties of ∥ X ∥ and X provide a logical equivalence ∥ X ∥ ↔ X, implying
that X is a propositional truncation of X.

2.7. Extension structures are finitary. Let X be a cubical set. Then the data of a global
extension structure on X unfolds externally to the following components:

ext : (I : □)(α : Cof(I))(x : [α]⇒ X)

→ {X(I) | α(idI) ↪→ x(idI)},
− : (f : □(J, I))(α : Cof(I))(x : [α]⇒ X)

→ ext(I, α, x)[F ] = ext(J, α[F ], x ◦ y(F )),

where y is the Yoneda embedding and [α] is the subobject of y(I) determined by the
cofibration α (a sieve on I).
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The set of natural transformations x : [α]⇒ X can be seen as a limit over the category
of elements

∫
□[α]. This category is infinite, so a naive unfolding of the notion of extension

structure is infinitary.
However we can use the specific definition of cofibrations in cartesian cubical sets to

replace these limits by finite limits.

Lemma 2.9. For every I ∈ □ and cofibration α : Cof(I), we can write the set ([α]⇒ X) as
a finite limit whose shape only depends on α, naturally in X.

(Equivalently, there is an initial functor C →
∫
□[α] where C is a finite category.)

Proof. We prove the result by induction on decompositions of α using interval equality,
binary disjunctions and binary conjunctions. The result then follows from the following
natural isomorphisms:

([(0 = 1)]⇒ X) ∼= {⋆},
([(i = i)]⇒ X) ∼= X(I),

([(i = j)]⇒ X) ∼= X(I\{i}), (When i ∈ I, j ∈ I + {0, 1} and i ̸= j)
([α ∧ β]⇒ X) ∼= ([α]⇒ ([β]⇒ X)),

([α ∨ β]⇒ X) ∼= ([α]⇒ X)×([α∧β]⇒X) ([β]⇒ X).

Corollary 2.10. The notion of extension structure over a cubical set is finitary: there is
an essentially algebraic theory TcSetext extending the essentially algebraic theory of cubical
sets.

We care more generally about extension structures over global cubical families, but the
argument extends directly to that case.

Corollary 2.11. The notion of extension structure over a cubical family is finitary: there is
an essentially algebraic theory TcFamext extending the essentially algebraic theory of cubical
families.

Corollary 2.12. For every finitary essentially algebraic theory T and morphism F : TcFam →
T , there is a finitary essentially algebraic theory TextF whose algebras are algebras M of T
along with an extension structure on the cubical family F ∗(M).

Proof. The essentially algebraic theory TextF is the pushout of TcFamext ← TcFam → T .

3. Strict Rezk completions of categories

In this section, we specify and construct the strict Rezk completions of categories. Some
of the statements of this section may have trivial assumptions, that is because the theory
of categories is a bit too simple: the category of category has a model structure and every
category is cofibrant, while in general we may want to consider left semi-model structures.
We try to keep the statements and proofs as close to the general case as possible.
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3.1. Categories and their homotopy theory. We start by giving general definitions that
can be interpreted either externally or internally to cSet.

Definition 3.1. A category C consists of:

ObC : Set,

HomC : X → X → Set,

EqHomC : ∀x y → HomC(x, y)→ HomC(x, y)→ Set,

id : ∀x→ HomC(x, x),

_ ◦_ : ∀x y z → HomC(y, z)→ HomC(x, y)→ HomC(x, z),

idl : EqHomC(id ◦ f, f),
idr : EqHomC(id ◦ f, f),
assoc : EqHomC(f ◦ (g ◦ h), f ◦ (g ◦ h)),
refl : ∀f → EqHomC(f, f),

(p, q : EqHomC(f, g))→ (p = q),

EqHomC(f, g)→ (f = g).

This presents categories as the algebras of a generalized algebraic theory. Together, the
last rules imply that EqHomC(f, g) is a proposition equivalent to the equality (f = g). We
could omit the sort EqHom without changing the definition of category, but that would give a
“wrong” generalized algebraic theory of categories, i.e. one that would not be compatible with
the homotopy theory of categories. The inclusion of EqHom corresponds to the inclusion of
{•⇒ •} → {• → •} as a generating cofibration in Cat. It can also be seen as a truncated
notion of 2-cell. Many definitions need to include conditions for all three sorts, e.g. weak
equivalences of categories are functors that are essentially surjective on objects, on morphisms
(full) and on morphism equalities (faithful).

We may write x ∈ C instead of x : ObC and f ∈ C(x, y) instead of f : HomC(x, y).
If C is a category, we write

IsoC(x, y) ≜ (f : HomC(x, y))× (f−1 : HomC(y, x))

× (fη : EqHomC(f ◦ f−1, id))× (f ε : EqHomC(f
−1 ◦ f, id)).

for the set of isomorphisms between objects x and y.
We now recall the main components of the homotopy theory of categories.

Definition 3.2. A functor F : C → D between categories is a split weak equivalence if
the following lifting conditions are satisfied:
• For every x ∈ D, there is some x0 ∈ X and some p : IsoD(F (x0), x).
• For every f ∈ D(F (x), F (y)), there is some f0 ∈ C(x, y) and some p : EqHomD(F (f0), f).
• For every p : EqHomD(F (f), F (g)), there is some p0 : EqHomC(f, g).

In other words, the split weak equivalences are the functors that are split essentially
surjective, full and faithful.

Proposition 3.3. Split weak equivalences satisfy 2-out-of-3 and are closed under retracts.

Definition 3.4. A functor F : C → D between categories is a split trivial fibration if its
actions on objects, morphisms, and morphism equalities are all split surjections:
• For every x ∈ D, there is x0 ∈ C such that F (x0) = x.
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• For every f ∈ D(F (x), F (y)), there is f0 ∈ C(x, y) such that F (f0) = f .
• For every p : EqHomD(F (f), F (g)), there is some p0 : EqHomC(f, g) such that F (p0) = p.

A functor I : A → B is an algebraic cofibration if it is equipped with left liftings
against all split trivial fibrations.

Definition 3.5. A functor F : C → D between categories is a split fibration if it satisfies
the following lifting condition:
• For every x ∈ C and isomorphism f : IsoD(F (x), y), there is an isomorphism f0 : IsoC(x, y0)

such that F (y0) = y and F (f0) = f .
A functor I : A → B is an algebraic trivial cofibration if it is equipped with left

liftings against all split fibrations.

Construction 3.6. For any category C, we construct a category PathC, called the path-
category of C, along with projection functors π1, π2 : PathC → C such that π1 and π2 are
split trivial fibrations and ⟨π1, π2⟩ : PathC → C × C is a split fibration.
• An object of PathC is a triple (x1, x2, xe) where xe : IsoC(x1, x2) is an isomorphism in C.
• A morphism from (x1, x2, xe) to (y1, y2, ye) is a pair (f1, f2) where f1 : x1 → y1, f2 : x2 →
y2 such that ye ◦ f1 = f2 ◦ xe.

The loop-category LoopC of a category C is the pullback

LoopC PathC

C C × C

⌟
π ⟨π1,π2⟩

⟨id,id⟩

Construction 3.7. We construct a category ReflLoopC, called the reflexive-loop-category
of C, as a displayed category ReflLoopC → LoopC , such that πe : ReflLoopC → LoopC is a split
fibration and the composition π : ReflLoopC → LoopC → C is a split trivial fibration.
• An object of ReflLoopC displayed over xe : IsoC(x, x) is a proof that xe = id.
• There is a unique displayed morphism over every morphism of LoopC.

Remark 3.8. The diagram

ReflLoopC PathC Cπe π1

π2

is a pseudo-reflexive graph object in Cat.
The projection π : ReflLoopC → C is actually an isomorphism. In other words, we

actually have a reflexive graph object in Cat. We try not to rely on this fact, as it won’t
hold for models of HoTT.

Proposition 3.9. The constructions of PathC and ReflLoopC (and their projection maps)
are functorial in C.

Proof. This follows from the fact that all components of PathC and ReflLoopC are expressed
in the language of categories (e.g. as finite limits of components of C). More precisely, the
functors PathC and ReflLoopC are induced by morphisms P,RL : TCat → TCat of essentially
algebraic theories, where TCat is the theory of categories.

Proposition 3.10. Let F : C → D be a functor. If π : ReflLoopC → C admits a section r
and F is an algebraic trivial cofibration, then F is a split weak equivalence.
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Proof. Write PathD[F × id] for the pullback of PathD over F × id : C ×D → D ×D.
Observe that there is a composite map

r′ : C r−→ ReflLoopC
πe−→ PathC → PathD[F × id]

such that π1 ◦ r′ = id and π2 ◦ r′ = F .
Since π1 : PathD[F × id]→ C is a pullback of π1 : PathD → D, it is a split trivial fibration.

By 2-out-of-3, the map r′ is a split weak equivalence.
The map π2, as the composition of split fibrations PathD[F× id]→ C×D and C×D → D,

is a split fibration. Since F = π2 ◦ r′ has the left lifting property against π2, the retract
argument says that the map F is a retract of r′.

Since split weak equivalences are closed under retracts, F is a split weak equivalence.

3.2. Complete categories. We now work internally to cSet.

Definition 3.11. We say that a category C has fibrant components if ObC , HomC(−) and
EqHomC(−) are fibrant.

Note that other sets such as IsoC(x, y) are also fibrant when C has fibrant components.

Definition 3.12. A category C with fibrant components is complete if:
• For every x ∈ C, the set (y ∈ C)× IsoC(x, y) is contractible.
• For every f ∈ C(x, y), the set (g ∈ C(x, y))× EqHomC(f, g) is contractible.
• For every p : EqHomC(f, g), the set EqHomC(f, g) is contractible.

The first condition says that C is univalent (Ahrens, Kapulkin, and Shulman 2015). The
second and third condition always hold due to the isomorphism EqHomC(f, g)

∼= (f = g),
but they morally say that HomC is a family of h-sets and that EqHomC(−) is a family of
h-propositions.

Definition 3.13. A strict Rezk completion of a global category C with fibrant components
is a global complete category C along with a global functor i : C → C such that the external
functor 1∗□(i) : 1

∗
□(C)→ 1∗□(C) is a weak equivalence.

There is a bijective correspondence between global internal categories and external
cubical categories. Cubical categories are themselves the algebras of a essentially algebraic
theory. When working externally, we write cCat for the category of cubical categories.

3.3. Cof-fibrant categories. We still work internally to cSet.
We now give the candidate definition of the strict Rezk completion. The strict Rezk

completion C of a category C should be defined as the free extension of C by some additional
structure. The first candidate would be to freely add completeness as defined in Definition 3.12,
but this is poorly behaved in the absence of fibrancy. We could freely add both completeness
and fibrant replacement, but proving that the externalization of the inclusion i : C → C is a
weak equivalence would become very hard.

Instead, following Theorem 2.8, we redefine completeness by using trivial fibrancy instead
of contractibility.

Definition 3.14. A Cof-fibrancy structure on a category C consists of:
• For every x ∈ C, an extension structure extOb(x) on (y ∈ C)× IsoC(x, y).
• For every f ∈ C(x, y), an extension structure extHom(f) on (g ∈ C(x, y))× EqHomC(f, g).
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• For every p : EqHomC(f, g), an extension structure extEqHom(p) on EqHomC(f, g).

Remark 3.15. Viewing this structure as a kind of fibrancy structure was suggested to the
author by Christian Sattler. In general, a functor F : C → D is a Cof-fibration if for every
lifting problem (against a generating trivial cofibration of the canonical model structure on
Cat), the set of diagonal fillers is trivially fibrant. More generally, we can parametrize these
definitions by a notion of cofibration (a monomorphism Cof ↪→ Ω). In the special case when
Cof = {true, false}, having an extension structure is the same as having an element, and we
recover the notion of split fibration from Definition 3.5.

We also note that a category C has fibrant components if for every lifting problem against
a generating cofibration, the set of diagonal fillers is fibrant.

For the theory of categories, only the component extOb actually matters, as shown in
the following proposition:

Proposition 3.16. Any category can uniquely be equipped with extHom and extEqHom.

Proof. This follows from the fact that the sets (g ∈ C(x, y))×EqHomC(f, g) and EqHomC(f, g)
are actually propositions.

Proposition 3.17. If a category with fibrant components has a Cof-fibrancy structure, then
it is complete.

Proof. By Proposition 2.5.

We now switch to the external point of view and consider the external category cCatCof-fib
of Cof-fibrant cubical categories. The Cof-fibrant cubical categories are the algebras of an
essentially algebraic theory TcCatCof-fib , where we use Corollary 2.12 to justify that TcCatCof-fib

is finitary. There is a forgetful functor R : cCatCof-fib → cCat. Because it is induced by a
morphism of essentially algebraic theories, it admits a left adjoint L : cCat→ cCatCof-fib.

Recall from subsection 2.3 that we have an endo-adjunction ((−)I ⊣ (−)I) on the external
category cCat of cubical categories.

Construction 3.18. The functor (−)I lifts to cCatCof-fib (along the forgetful functor R).

Construction. Internally, we have to construct, for every global category C, a global map

extObCI
: (α : Cof)(x ∈ CI)([α]→ (y ∈ CI)× IsoCI(x, y))→ (y ∈ CI)× IsoCI(x, y).

We pose
extObCI

(α, x, e) ≜ (λi 7→ extObC (α, x(i), e(i))).

Checking functoriality is straightforward.

Construction 3.19. The functor (−)I lifts to cCatCof-fib (along the forgetful functor R).

Construction. Internally, we have to construct, for every global category C, a global map

extObCI
: (α : Cof)(x ∈ CI)([α]→ (y ∈ CI)× IsoCI(x, y))→ (y ∈ CI)× IsoCI(x, y).

By the universal properties of the components of CI, it suffices to construct a global map

EC : (α : CofI)(x ∈ (CI)
I)(e : (i : I)→ [α(i)]→ (y ∈ CI)×IsoCI(x(i), y))→ (y ∈ C)×IsoC(x, y).

The counit of the adjunction at C is a functor ϵC : (CI)
I → C.

We pose:
EC(α, x, e) ≜ extObC (ϵC(x), [∀iα(i) 7→ ϵC(e)]).
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We rely on the closure of cofibrations under ∀i:I. Note that the functor evaluation ϵC(e)
is only valid under [∀iα(i)]. Indeed, we then have e : (i : I)→ (y ∈ CI)× IsoCI(x(i), y).

We then know that ε(λi.extObCI
(α, x(i), e(i))) = EC(α, x, e).

Functoriality follows from the naturality of EC .

Proposition 3.20. The endo-adjunction ((−)I ⊣ (−)I) lifts to an endo-adjunction on the
external category of Cof-fibrant cubical categories.

Proof. We have already lifted the two functors in Construction 3.18 and Construction 3.19,
it remains to lift the rest of the adjunction.

Take global categories C,D with Cof-fibrancy structures, and functors F : CI → D and
G : C → DI that are transposes of each others.

We have to show that F preserves Cof-fibrancy if and only if G preserves Cof-fibrancy.
Because preservation of Cof-fibrancy is propositional data, naturality will hold automatically.

The functor F preserving Cof-fibrancy means that there is a global proof

P1 : (α : Cof)(x ∈ CI)(e : (i : I)[α]→ (y ∈ C)× IsoC(x(i), y))

→ F (λi.extObC (x(i), [α 7→ e(i)])) = extObD(F (x), [α 7→ F (e)]).

This holds if and only if there is a global proof

P2 : (α : CofI)(x ∈ CI)(e : (i : I)[α(i)]→ (y ∈ C)× IsoC(x(i), y))

→ F (λi.extObC (x(i), [α(i) 7→ e(i)])) = extObD(F (x), [∀iα(i) 7→ F (e)]).

Indeed, in the forward direction, we can pose

P2(α, x, e) ≜ P1(∀iα(i), x, (λi.e(i))),
where e(i), as a partial element defined under α(i), is also defined under ∀iα. In the reverse
direction, we can pose

P1(α, x, e) ≜ P2((λi.α), x, (λi.extObC (x(i), [α 7→ e(i)]))),

since (∀iα)↔ α.
Now using the fact that F = ϵD ◦GI, we obtain that F preserves Cof-fibrancy if and

only if there is a global proof of:

(α : CofI)(x ∈ CI)(e : (i : I)[α(i)]→ (y ∈ C)× IsoC(x(i), y))

→ ϵD(λi.G(extObC (x(i), [α(i) 7→ e(i)]))) = extObD(ϵD(λi.G(x(i))), [∀iα(i) 7→ ϵD(λi.G(e(i)))]).

On the left hand side we have the transpose of G ◦ extObC . On the right hand side we
recognize the transpose of extObDI

from Construction 3.19. Therefore, by Lemma 2.1, the
above proposition holds if and only there is a global proof of:

(α : Cof)(x ∈ C)(e : [α]→ (y ∈ C)× IsoC(x, y))

→ G(extObC (α, x, e)) = extObDI
(G(x), [α 7→ G(e)]),

i.e. if G preserves Cof-fibrancy, as needed.

Proposition 3.21. The functor (−)I : cCat→ cCat preserves algebraic cofibrations.

Proof. Using the adjunction ((−)I ⊣ (−)I), it suffices to prove that (−)I preserves split
fibrations, Using the adjunction again, it suffices to prove that (−)I sends the generating
cofibrations to algebraic cofibrations. But the generating cofibrations (in cubical categories)
are functors between cubical categories with discrete components, which implies that the
generating cofibrations are preserved by (−)I, as needed.
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3.4. Fibrancy of the components of the strict Rezk completion. The strict Rezk
completion of a global category C will be the Cof-fibrant replacement C of C. We will need
to prove that the components of C are fibrant. For this purpose, we will use Lemma 2.7. The
pseudo-reflexive graphs will arise from the components of the pseudo-reflexive graph object

ReflLoopC PathC C,πe π1

π2

but we also have to check the existence of weak coercion operations and the homotopicality
condition.

We now specify notions of weak coercion structures over lines of objects and morphisms
in a category C.

Definition 3.22. Let x : I→ ObC be a line of objects of a category C. A weak coercion
structure on x consists of a family

wcoer→s
x : IsoC(x(r), x(s))

of isomorphisms along with a family

wcohrx : EqHomC(wcoe
r→r
x , idx(r))

of equalities between morphisms.

Definition 3.23. Let f : (i : I)→ HomC(x(i), y(i)) be a line of morphisms of a category C.
Given weak coercion structures for x and y, a weak coercion structure on f consists

of a family
wcoer→s

f : EqHomC(wcoe
r→s
y ◦ f(r), f(s) ◦ wcoer→s

x )

of morphism equalities.

Construction 3.24. Given any category C, we define a displayed category HasWCoeC over
CI.
• A displayed object over x : I→ ObC is a weak coercion structure wcoex over x.
• A displayed morphism over f : (i : I) → HomC(x(i), y(i)) is a weak coercion structure
wcoef over f .
•We now define the displayed identity. Take a line x : I→ ObC equipped with a weak coercion

structure. We equip idx(−) : (i : I)→ HomC(x(i), x(i)) with a weak coercion structure:

wcoer→s
idx(−)

: EqHomC(wcoe
r→s
x ◦ id, id ◦ wcoer→s

x ),

wcoer→s
idx(−)

≜ refl.

•We then define the displayed composition. Take lines f : (i : I) → HomC(y(i), z(i))
and g : (i : I) → HomC(x(i), y(i)) equipped with weak coercion structures. We equip
(f(−) ◦ g(−)) : (i : I)→ HomC(x(i), z(i)) with a weak coercion structure:

wcoer→s
f(−)◦g(−) : EqHomC(wcoe

r→s
z ◦ f(r) ◦ g(r), f(s) ◦ g(s) ◦ wcoer→s

x ).

This equality follows from

wcoer→s
f : EqHomC(wcoe

r→s
z ◦ f(r), f(s) ◦ wcoer→s

y )

and
wcoer→s

g : EqHomC(wcoe
r→s
y ◦ g(r), g(s) ◦ wcoer→s

x ).

• The interpretations of idl, idr and assoc are trivial, any two weak coercion structures over
a same morphism are equal.
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Remark 3.25. The definition of HasWCoeC can also be derived from the definitions of Path−
and ReflLoop−.

For any r, s : I, we can consider the pullback

PathC [⟨−r,−s⟩] PathC

CI C × C

⌟

⟨−r,−s⟩

For any r : I, we can then consider the pullback

ReflLoopC [⟨−r⟩] ReflLoopC

PathC [⟨−r,−r⟩] LoopC PathC

CI C C × C

⌟

⌟ ⌟

⟨−r⟩

Now consider the diagram shape consisting of objects base, path(r, s) for r, s : I and
refl-loop(r) for r : I, such that base is terminal and with morphisms refl-loop(r)→ path(r, r)
for r : I. Unfolding the constructions shows that HasWCoeC is the limit of the diagram

base 7→ CI,

path(r, s) 7→ PathC [⟨−r,−s⟩],
refl-loop(r) 7→ ReflLoopC [⟨−r⟩],

with the evident restriction maps.
In particular, in any situation in which we have path-objects and reflexive-loop-objects,

we can use this limit as a definition of HasWCoe, and obtain notions of weak coercion
structures.

Proposition 3.26. The construction of HasWCoeC is functorial in C.

Proof. This follows from the functoriality of Path− and ReflLoop−.

Lemma 3.27. If a category C has fibrant components, then for any algebraically cofibrant
category A, the set Cat(A, C) of functors from A to C is fibrant.

Proof. By Lemma 2.1, it suffices to construct an element of HasWCom(λi 7→ Cat(A(i), C(i)))
given a line A of algebraically cofibrant categories and C of categories with fibrant components.

We define D(s) as the equalizer of

C(r)×
∏
s:I C(s)×

∏
i:I C(i) C(r)[α] ×

∏
i:I C(i)[α]

f1

f2

where f1(b, w,w) ≜ (w(r), w) and f2(b, w,w) ≜ (b, λ_ 7→ b). (More precisely, using combina-
tors for categorical products, f1 =

〈
⟨πr ◦ π2⟩−:[α], ⟨π3⟩−:[α]

〉
and f2 =

〈
⟨π1⟩−:[α], ⟨π1⟩i:I,−:[α]

〉
.)

We define E(s) as the equalizer of

C(r)×
∏
s:I C(s)[α] C(r)[α]

g1

g2
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where g1(b, t) ≜ t(r) and g2(b, t) ≜ b. (More precisely, using combinators for categorical
products, g1 = ⟨πr ◦ π2⟩−:[α] and g2 = ⟨π1⟩−:[α].)

We have a functor p : D(s)→ E(s), determined by the same formula

p(b, w,w) ≜ (b, λs 7→ w(s))

as for Lemma 2.3. Since limits and computed sortwise in categories, the actions of p on
objects, morphisms and morphism equalities are given by the map of Lemma 2.3. Thus,
since C(s) has fibrant components, Lemma 2.3 implies that the actions of p on each sort are
split surjections, i.e. that the map p : D(s)→ E(s) is a split trivial fibration.

Now take t : [α] → (s : I) → Cat(A(s), C(s)) and b : Cat(A(r), C(r)) such that
[α] → t(r) = b. We have a map ⟨b, t⟩ : A(s) → E(s). Since A(s) is algebraically cofibrant,
this map factors through p. This factor can be decomposed into wcomr→s

Cat(A(−),C(−))(t, b) and
wcomr

Cat(A(−),C(−))(t, b), as needed.

Proposition 3.28. If a category C has fibrant components, then the projection HasWCoeC →
CI is a split trivial fibration.

Proof. Note that this amounts to checking the following conditions:
• For every line x : I→ ObC , there is a weak coercion structure over x.
• For every line f : (i : I)→ HomC(x(i), y(i)), and given weak coercion structures over x and
y, there is a weak coercion structure over f .
• There is also a condition for equalities between morphisms, but it is trivial since morphism

equalities are trivial in HasWCoeC .
We prove it more abstractly using the definition of HasWCoe as a limit. Let I : A→ B

be a (generating) trivial cofibration and take a lifting problem

A HasWCoeC

B CI .

F

I

G

We construct a diagonal lift B → HasWCoeC using the universal property of HasWCoeC

as a limit. This means that we have to construct diagonal lifts Kr,s : B → PathC [⟨−r,−s⟩]
for any r, s : I and Lr : B → ReflLoopC [⟨−r⟩] for any r : I such that πe ◦ Lr = Kr,r. Since C
has fibrant components, PathC [⟨−r,−s⟩] also has fibrant components. Thus, by Lemma 3.27,
it suffices to define Kr,s under the diagonal cofibration (r = s). Since π : ReflLoopC → C is a
split trivial fibration, so is its pullback π : ReflLoopC [⟨−r⟩]→ CI. This provides the lifts Lr,
and we can pose Kr,r = πe ◦ Lr.

Now assume that C be a global algebraically cofibrant category with fibrant components.

Construction 3.29. We write C for the Cof-fibrant replacement of C, i.e. the category freely
generated by a functor i : C → C and a Cof-fibrancy structure.

We will have to prove two things: the fibrancy of the components of C, and the fact that
1∗□(i) : 1

∗
□(C)→ 1∗□(C) is an external split weak equivalence of categories.

Lemma 3.30. The map iI : CI → CI exhibits CI as a Cof-fibrant replacement of CI.
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Proof. We work externally. There is an adjunction (L ⊣ R) between the categories cCat and
cCatCof-fib. We also have an endo-adjunction ((−)I ⊣ (−)I) on cCat which lifts (along R)
to cCatCof-fib. We know that R commutes strictly with all components of the adjunctions
((−)I ⊣ (−)I); in other words, R determines a morphism from the adjunction ((−)I ⊣ (−)I)
on cCatCof-fib to the adjunction ((−)I ⊣ (−)I) on cCat.

In such a situation, we obtain, for every C : cCat, an adjunction between the comma
categories (C ↓ R) and (CI ↓ R). The left adjoint sends (D : cCatCof-fib, f : C → R(D)) to
(DI, f I), relying on the fact that R(DI) = R(D)I. The right adjoint sends (D : cCatCof-fib, g :
CI → R(D)) to (DI, gI ◦ εC) : C → R(DI).

This left adjoint preserves initial object, which tells us that L(C)I ∼= L(CI) and ηIC ∼= ηCI ,
where η is the unit of the adjunction (L ⊣ R).

Proposition 3.31. The displayed category HasWCoeC can be equipped with a displayed
Cof-fibrancy structure.

Proof. We interpret the operations of a Cof-fibrancy structure. By Proposition 3.16, we only
have to interpret extOb.
Interpretation of extOb: Take a cofibration α and lines x : I→ C, y : (i : I)→ [α]→ ObC

and e : (i : I) → [α] → IsoC(x(i), y(i)). We need to define displayed object (weak
coercion structures) over the lines G(−) = GlueOb(x(−), y(−), e(−)) (of objects) and
g(−) = glueOb(x(−), y(−), e(−)) (of isomorphisms). A weak coercion structure for the
isomorphism g consists of weak coercion structures for both morphisms g and g−1. The
coercion structures should also coincide with wcoey and wcoee under the cofibration α.

We pose

wcoer→s
G : IsoC(G(r), G(s)),

wcoer→s
G ≜ g(s) ◦ wcoer→s

x ◦ g(r)−1,

wcohrG : EqHomC(wcoe
r→r
G , id),

wcoer→s
g : EqHomC(wcoe

r→s
G ◦ g(r), g(s) ◦ wcoer→s

x ),

wcoer→s
g−1 : EqHomC(wcoe

r→s
x ◦ g(r)−1, g(s)−1 ◦ wcoer→s

G ).

The equality wcohrG follows from wcohrx, which says that wcoer→r
x = idx. The equalities

wcoer→s
g and wcoer→s

g−1 follow from the definition of wcoer→s
G and the categorical laws.

We then have to check that under α, these restrict to wcoey, wcohy, wcoee and
wcoee−1 . We already know that G and g restrict to y and e. Only the case of
wcoey is non-trivial: it follows from the equality wcoee between wcoer→s

y ◦ e(r) and
e(s) ◦ wcoer→s

x .

Proposition 3.32. The displayed category HasWCoeC → CI admits a global section.

Proof. By Proposition 3.28, HasWCoeC → CI is a split trivial fibration. By Proposi-
tion 3.21, the functor (−)I preserves algebraic cofibrations, so CI is algebraically cofibrant and
HasWCoeC → CI admits a section. By composing this section with HasWCoeC → HasWCoeC ,
we obtain a map CI → HasWCoeC displayed over iI : CI → CI.

By combining this with Proposition 3.31, we can use the universal property of CI

from Lemma 3.30 to obtain a section of HasWCoeC → CI.

Proposition 3.33. The category C has fibrant components.
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Proof. We need to define weak composition structures for the objects, morphisms and
morphism equalities of C.
Weak composition for ObC: We use Lemma 2.7 for A = ⊤ and B = λ_ → ObC . The

families EB and RB are given by the corresponding components of PathC and ReflLoopC ,
namely

EB(x, y) = IsoC(x, y),

RB(x, f) = EqHomC(f, id).

By Proposition 3.32, we have the required operations wcoe and wcoh.
It remains to check homotopicality, i.e. to construct extension structures

∀x→ HasExt((y : ObC)× IsoC(x, y)),

∀x→ HasExt((f : IsoC(x, x))× EqHomC(f, id)).

They both arise from C being Cof-fibrant.
Weak composition for HomC: We use Lemma 2.7 for A = ObC × ObC and B(x, y) =

HomC(x, y). The families EA, RA, EB and RB are given by the corresponding (limits
of) components of PathC and ReflLoopC , e.g. EA((x1, y1), (x2, y2)) = IsoC(x1, x2) ×
IsoC(y1, y2). By Proposition 3.32, we have the required operations wcoe and wcoh.

It remains to construct extension structures

∀(xe : IsoC(x1, x2))(ye : IsoC(y1, y2))(f1 ∈ HomC(x1, y1))

→ HasExt((f2 : HomC(x2, y2))× EqHomC(f2 ◦ xe, ye ◦ f1)),
∀(xe : IsoC(x, x))(xr : EqHomC(xe, id))(ye : IsoC(x, x))(yr : EqHomC(ye, id))

(f ∈ HomC(x, y))

→ HasExt((f : IsoC(x, x))× EqHomC(f, id)).

The set (f2 : HomC(x2, y2)) × EqHomC(f2 ◦ xe, ye ◦ f1) has a unique element (ye ◦
f1 ◦ x−1

e , refl). The set (f : IsoC(x, x))× EqHomC(f, id) has a unique element (id, refl).
This provides the needed extension structures.

Weak composition for EqHomC: We could proceed as above, but this follows more directly
from Proposition 2.5, since EqHomC(f, g) is trivially fibrant.

Remark 3.34. In the proof of Proposition 3.33 we had to prove the trivial fibrancy of some
sets in order to ensure homotopicality. An alternative would be to add these as additional
extension structures in the definition of Cof-fibrancy structure. This would simplify the
proof of Proposition 3.33, at the price of additional cases in the proof of Proposition 3.31.

The cleanest approach is probably not to add these additional extension structures, but
show that they arise from the trivial fibrancy of spaces of solutions to some lifting problem
against cofibrations in Cat. This would require studying in more details the notion of
Cof-fibration, its closure properties and how it interacts with the other classes of maps.

We have now proven that C has fibrant components. It remains to prove that 1∗□(i) :

1∗□(C)→ 1∗□(C) is an external split weak equivalence.

Lemma 3.35. The external category 1∗□(C) has the universal property of the fibrant replace-
ment of 1∗□(C).
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Proof. This almost follows from the fact that the left adjoint 1∗□ preserves colimits, except
for the fact that the definition of C depends on the internal notion of cofibration. This can
be seen as a crisp induction principle for C, and could alternatively be proven in the spatial
type theory of Shulman (2018).

A fibrancy structure on a category X is an operation

extOb : (x ∈ X )→ (y ∈ X )× (f : IsoX (x, y)).

(Operations extHom and extEqHom would be trivial for the same reasons as Proposition 3.16.)
We work externally.
Write Catfib for the category of categories with a fibrancy structure, cCatfib for the

category of cubical categories with fibrancy structures, and CatCof-fib for the category of
cubical categories with a Cof-fibrancy structure.

There is a functor cCatCof-fib → cCatfib, obtained by specializing the Cof-fibrancy
structure to the cofibration ⊥. Moreover, this functor is induced by a morphism of essentially
algebraic theories.

We have the following diagram, where the bottom part is a morphism of adjunctions.

cCatCof-fib

cCatfib Catfib

cCat Cat

1∗□

⊤
(1□)∗

1∗□

⊤
(1□)∗

Now for any C : Catfib, we prove that (1□)∗(C) admits a unique Cof-fibrancy structure
extending its fibrancy structure. The component of the Cof-fibrancy structure for α : Cof
consists of a map

(x : (1□)∗(X))(y : [α]→ (1□)∗(Y (x)))→ (1□)∗({Y (x) | α ↪→ y})

for some sets X and Y . By properties of the right adjoint (1□)∗, we can assume that
α, x and y are global elements. In particular, the cofibration α is either ⊤ or ⊥, since
global cofibrations are decidable. When α = ⊤, the component of the fibrancy structure is
uniquely determined. Thus, a Cof-fibrancy structure on (1□)∗(C) is uniquely determined
by its component for α = ⊥. In other words, (1□)∗(C) has a unique Cof-fibrancy structure
extending its fibrancy structure.
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This implies that we have a morphism of adjunctions

cCatCof-fib Catfib

cCat Cat

1∗□

⊤

R R

(1□)∗

1∗□

⊤
(1□)∗

In this situation, we have, for any C : cCat, an adjunction between commas categories
(C ↓ R) and (1∗□(C) ↓ R), whose left adjoint sends (D : cCatCof-fib, f : C → R(D)) to
(1∗□(D), 1∗□(f)). The preservation of the initial object then says that 1∗□ sends the Cof-fibrant
replacement of C to the fibrant replacement of 1∗□(C), as needed.

Proposition 3.36. The functor 1∗□(i) : 1
∗
□(C)→ 1∗□(C) is a split weak equivalence.

Proof. We first show that π : ReflLoop1∗□(C) → 1∗□(C) admits a section. Since C is algebraically
cofibrant and πe : ReflLoopC → C is a split trivial fibration, we have a section r of π :
ReflLoopC → C, hence a section 1∗□(r) of 1∗□(π) : 1

∗
□(ReflLoopC)→ 1∗□(C). Since 1∗□ preserves

finite limits and the components of ReflLoopC are finite limits of components of C, we have
1∗□(ReflLoopC) = ReflLoop1∗□(C). Thus, 1∗□(r) is a section of π : ReflLoop1∗□(C) → 1∗□(C).

By Lemma 3.35, we know that 1∗□(i) : 1
∗
□(C)→ 1∗□(C) is an algebraic trivial cofibration.

We have verified the conditions of Proposition 3.10. Therefore, 1∗□(i) : 1
∗
□(C)→ 1∗□(C) is

a split weak equivalence.

Theorem 3.37. Any global cofibrant category with fibrant components admits a strict Rezk
completion.

Proof. We use the category C defined in Construction 3.29. By Proposition 3.33 it has fibrant
components. By Proposition 3.17 it is complete. By Proposition 3.36, the functor i : C → C
is a split weak equivalence.

4. Semantics of HoTT

In this section we describe the semantics of HoTT, i.e. we describe its category of models
and some model constructions.

We choose a variant of HoTT in which every type belongs to some universe. The types
are stratified by a hierarchy of ω universes (Un)n<ω, and types at level n are in bijective
correspondence with terms of Un. Using this variant, it suffices to consider terms in many
constructions, instead of dealing with terms and types separately.

4.1. Families. We first describe HoTT as a second-order theory, i.e. using higher-order
abstract syntax.
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Definition 4.1. A cumulative family consists of the following components, where n ranges
over natural numbers:

Tyn : Set,

Tmn : Tyn → Set,

Liftn : Tyn → Tyn+1,

lift : Tmn(A) ∼= Tmn+1(Liftn(A)),

Un : Tyn+1,

El : Tm(Un) ∼= Tyn.

If M is a cumulative family, we may write Mn instead of M.Tyn. We also omit Tm(−)
when possible. For instance, given a type A : Mn, the set of dependent type may be written
A→Mn instead of M.Tm(A)→M.Tyn. We similarly omit Lift(−), lift(−) and El(−) when
unambiguous.

Definition 4.2. A MLTT-family is a cumulative family equipped with the structures of
Π-types with function extensionality, Σ-types, 1-types, Id-types, boolean types, empty types
and W -types.

The following definitions of contractible types and equivalences are used to specify
univalent universes.

isContr(A) ≜ (x : A)× ((y : A)→ IdA(x, y)),

isEquiv(f) ≜ (b : B)→ isContr((a : A)× IdB(f(a), b)),

Equiv(A,B) ≜ (f : A→ B)× isEquiv(f).

Definition 4.3. A univalence structure on a MLTT-family consists of operations

uan : (A : Un)→ isContr((B : Un)× Equiv(A,B)).

Definition 4.4. A HoTT-family is a MLTT-family equipped with a univalence structure.

4.2. Models. Our notion of models is based on categories with families (Dybjer 1995;
Castellan, Clairambault, and Dybjer 2021).

Definition 4.5. A model of HoTT is a category M, with a terminal object 1M, together
with a global HoTT-family (M.Ty,M.Tm, . . . ) in Psh(M), such that for every n < ω, the
dependent presheaf M.Tmn is locally representable.

If M is a model, we will write a :: X to indicate that A is a global element of a global
type X of the presheaf model Psh(M). In particular, we may write A :: M.Tyn (or A :: Un)
to indicate that A is a closed type, or A :: y(Γ)→M.Tyn to indicate that A is a type over
Γ ∈M.

We will sometimes need to restrict to democratic models.

Definition 4.6. A model M is democratic if for every object Γ ∈M, there is a closed
type K(Γ) and an isomorphism 1.K(Γ) ∼= Γ.
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Given a democratic model, we will identify contexts with closed types and omit the
operation K(−) and the isomorphism 1.K(Γ) ∼= Γ.

The category of models of HoTT can be equipped with classes of weak equivalences,
fibrations, trivial fibrations, etc. These correspond to the classes of maps introduced by Ka-
pulkin and Lumsdaine (2018). These classes of maps are local, in the sense that their lifting
conditions only involve types and terms, not objects and morphisms. As a consequence, they
are only well-behaved when restricted to democratic models. Because types are in bijective
correspondence with terms of universes, we can omit any lifting condition involving types
from our definitions. Only lifting conditions for terms are needed.

Definition 4.7. A morphism F : M → N between models of HoTT is a split weak
equivalence if the following weak lifting condition is satisfied:
Weak term lifting: For every type A : M.Ty(Γ) and term a : N .Tm(F (Γ), F (A)), there

is a term a0 : M.Tm(Γ, A) and an identification p : N .Tm(F (Γ), IdF (A)(F (a0), a)).

Definition 4.8. A morphism F : M → N between models of HoTT is a split trivial
fibration if the following lifting condition is satisfied:
Term lifting: For every type A : M.Ty(Γ) and term a : N .Tm(F (Γ), F (A)), there is a

term a0 : M.Tm(Γ, A) such that F (a0) = a.
A morphism I : A → B is an algebraic cofibration if it is equipped with lifting

structures against all split trivial fibrations.

Definition 4.9. A morphism F : M→ N between models of HoTT is a split fibration if
the following lifting condition is satisfied:
Identification lifting: For every term a : M.Tm(Γ, A) and identification

p : N .Tm(F (Γ), IdF (A)(F (x), y)),

there is a term y0 : M.Tm(Γ, A) and an identification p0 : M.Tm(Γ, IdA(x, y0)) such
that F (y0) = y and F (p0) = p.

A morphism I : A→ B is an algebraic trivial cofibration if it is equipped with lifting
structures against all split fibrations.

Proposition 4.10. Split weak equivalences between democratic models satisfy the 2-out-of-3
property.

Proof. Let F : C → D and G : D → E be two composable morphisms between democratic
models.
1 : Assume that both F and G are weak equivalences.

Take a term a : E .Tm(G(F (Γ)), G(F (A)). Since G is a weak equivalence, there
is a0 : D.Tm(F (Γ), F (A)) and p0 : E .Tm(G(F (Γ)), Id(G(a0), a)). Since F is a weak
equivalence, there is a1 : C.Tm(Γ, A) and p1 : D.Tm(F (Γ), Id(F (a1), a0)). Then
(G(p1) · p0) : E .Tm(G(F (Γ)), Id(G(F (a1)), a)) witnesses the fact that a1 is a weak lift
of a. Thus (G ◦ F ) is a weak equivalence.

2 : Assume that both G and (G ◦ F ) are weak equivalences.
Take a term a : D.Tm(F (Γ), F (A)). Since (G ◦ F ) is a weak equivalence, there

is a0 : C.Tm(Γ, A) and p0 : E .Tm(G(F (Γ)), Id(G(F (a0)), G(a))). Since G is a weak
equivalence, there is p1 : D.Tm(F (Γ), Id(F (a0), a), exhibiting a0 as a weak lift of a.
Thus F is a weak equivalence.
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3 : Assume that both F and (G ◦ F ) are weak equivalences.
Take a term a : E .Tm(G(Γ), G(A)). Since F is a weak equivalence and D is demo-

cratic, there is Γ0 ∈ C and A0 : C.Ty(Γ0), an equivalence α between F (Γ0) and Γ and a
dependent equivalence β between F (A0) and A lying over α. We can transport a over
G(α) andG(β) to obtain a term a0 : E .Tm(G(F (Γ0)), G(F (A0)). Since (G◦F ) is a weak
equivalence, there is a lift a1 : C.Tm(Γ0, A0) and p1 : E .Tm(G(F (Γ0)), Id(G(F (a1)), a0)).
Now define a2 : D.Tm(Γ, A) by transporting a1 over α and β. The transports cancel
out in G(a2), and we obtain an identification p2 : E .Tm(G(Γ0), Id(G(a2), a)), exhibiting
a2 as a weak lift of a. Thus G is a weak equivalence.

Proposition 4.11. Split weak equivalences are closed under retracts.

Proof. Take a retract diagram

A B A

C D C,

S1

G F

R1

G

S2 R2

and assume that F : B → D is a split weak equivalence.
Take a term a : C.Tm(G(Γ), G(A)). Since F is a weak equivalence, there is a0 :

B.Tm(S1(Γ), S1(A)) and an identification p0 : D.Tm(S2(G(Γ)), Id(F (a0), S2(a))). Then
R1(a0) : A.Tm(Γ, A) and R2(p0) : C.Tm(G(Γ), Id(G(R1(a0)), a)) is an identification witness-
ing the fact that R1(a0) is a weak lift of a. Thus G is a weak equivalence.

4.3. Displayed families. We now describe displayed HoTT-families, which should be
thought as the motives and methods of the induction principle that we will use to prove
homotopy canonicity. Displayed HoTT-families correspond to the notion of displayed higher-
order model from Bocquet, Kaposi, and Sattler (2023).

Definition 4.12. A displayed cumulative family M• over a model M consists of the
following components:

Ty•n : M.Tyn(1M)→ Set,

Tm•
n : Ty•n(A)→M.Tmn(1M, A)→ Set,

Lift•n : Ty•n(A)→ Ty•n+1(Liftn(A)),

lift• : Tm•
n(A

•, a) ∼= Ty•i+1(Lift
•
n(A

•), lift(a)),

U•
n : Ty•n+1(Un),

El• : Tm•(U•
n, A)

∼= Ty•n(El(A)).

A displayed MLTT-family is a displayed cumulative family together with displayed
Π-types with function extensionality, Σ-types, 1-types, Id-types, boolean types, empty types
and W -types.
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We can compute the following definitions of displayed contractibility witnesses and
equivalences.

isContr•(A•, c) = (x• : A•(fst(c)))× (∀y (y• : A•(y))→ Id•(A•, x•, y•, app(snd(c), y))),

isEquiv•(f•, e)

= (∀b b• → isContr•(λ(a, p) 7→ (a• : A•(a))× (p• : Id•(B•, f•(a•), b•, p)), app(e, b))),

Equiv•(A•, B•, f) = (f• : ∀a→ A•(a)→ B•(app(fst(f), a)))× isEquiv•(f•, snd(f)).

Definition 4.13. A displayed HoTT-family is a displayed MLTT-family together with a
displayed univalence structure:

ua• : ∀A, (A• : Ty•n(A))→ isContr•(λ(B, f) 7→ (B• : Ty•n(B))× Equiv•(A•, B•, f), ua(A)).

4.4. Sconing. We also recall the sconing operation, also called displayed contextualization,
which turns a displayed family into a displayed model. The purpose of this construction is to
allow for the use of the induction principle of the syntax of HoTT (any displayed model over
the syntax admits a section). Strict canonicity for MLTT can be proven using an instance of
this construction; we refer the reader to Bocquet, Kaposi, and Sattler (2023) for more details.

Construction 4.14. If M• is a displayed HoTT-family over M, we construct a model
SconeM• displayed over M.

• An object of SconeM• displayed over Γ ∈M is a family

Γ• : M(1M,Γ)→ Set.

• A morphism of SconeM• from Γ• to ∆• displayed over f ∈M(Γ,∆) is a family

f• : ∀γ → Γ•(γ)→ Γ•(f ◦ γ).

• A type of SconeM• over Γ• displayed over A : M.Tyn(Γ) is a family

A• : ∀γ → Γ•(γ)→ Ty•(A[γ]).

• A term of SconeM• of type A• displayed over a : M.Tm(Γ, A) is a family

a• : ∀γ → (γ• : Γ•(γ))→ Tm•(A•(γ•), a[γ]).

• The substitution actions on types and terms are defined by function composition:

A•[f•] ≜ λγ• 7→ A•(f•(γ•)),

a•[f•] ≜ λγ• 7→ a•(f•(γ•)).

• The displayed empty context ⋄• and extended contexts are given by singleton sets and
dependent sums:

⋄• ≜ λ_ 7→ {⋆},
(Γ•.A•) ≜ λ(γ, a) 7→ (γ• : Γ•(γ))× (a• : A•(γ•, a)).
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• All type-theoretic structures are defined pointwise using the corresponding operation from
M•.

SconeM• .1(Γ•) ≜ λγ• 7→ 1•,

SconeM• .Π(Γ•, A•, B•) ≜ λγ• 7→ Π•(A•(γ•), λa• 7→ B•(γ•, a•)),

SconeM• .lam(Γ•, b•) ≜ λγ• 7→ lam•(λa• 7→ B•(γ•, a•)),

SconeM• .ua(Γ•, A•) ≜ λγ• 7→ ua•(A•(γ•)),

. . .

• All naturality conditions follow simply from associativity of function composition.

4.5. Relational equivalences. Let M be a HoTT-family. We define relational equivalences
(also known as one-to-one correspondences) and reflexivity structures, which will be used to
define the path and reflexive-loop models of HoTT. Relational equivalences are equivalent to
other definitions of equivalences in HoTT (e.g. half-adjoint equivalences). A self-equivalence
has a reflexivity structure when it is homotopic to the identity equivalence. The definition
of these structures as families of types together with contractibility conditions permits the
definition of models corresponding to parametricity translations (the families of types are
then seen as logical relations).

Definition 4.15. Given types A1, A2 : Mn, a relational equivalence Ae : RelEquiv(A1, A2)
consists of a type-valued relation

Ae : A1 → A2 →Mn,

and families of contractibility proofs witnessing that Ae is functional in both directions

Ae.
−→
fun : (a1 : A1)→ isContr((a2 : A2)×Ae(a1, a2)),

Ae.
←−
fun : (a2 : A2)→ isContr((a1 : A1)×Ae(a1, a2)).

Definition 4.16. A reflexivity structure Ar : isRefl(Ae) over an equivalence Ae :
RelEquiv(A,A) consists of a family

Ar : (a : A)→ Ae(a, a)→Mn,

along with a family of contractibility proofs witnessing the unique existence of a reflexivity
loop

Ar.refl : (a : A)→ isContr((ae : Ae(a, a))×Ar(a, ae)).

Construction 4.17. Given a relational equivalence Ae : RelEquiv(A1, A2) and elements
xe : Ae(x1, x2) and ye : Ae(y1, y2), there is a relational equivalence IdRelEquiv(Ae, xe, ye) :
RelEquiv(IdA1(x1, y1), IdA2(x2, y2)), defined by

IdRelEquiv(Ae, xe, ye) ≜ λrefl refl 7→ IdAe(x1,x2)(xe, ye).

When Ae is a self-equivalence with a reflexivity structure Ar : isRefl(Ae) and we have
elements xr : Ar(x, xe) and yr : Ar(y, ye), there is a reflexivity structure IdisRefl(Ar, xr, yr) :
isRefl(IdRelEquiv(Ae, xe, ye)), defined by

IdisRefl(Ar, xr, yr) ≜ λrefl refl 7→ IdAr(x,xe)(xr, yr).
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Construction 4.18. The universe Un has a reflexive relational equivalence, given by:

URelEquiv ≜ λA B → RelEquiv(A,B),

U isRefl ≜ λA E → isRefl(A,E).

The contractibility conditions follow from univalence.

Relational equivalences and reflexivity structures are also preserved by the other type
formers (Σ-, Π-, W -, boolean, empty and unit types). For details see the Agda formalization.

4.6. Path and reflexive loop models. We construct path and reflexive-loop models of
HoTT. These are instances of homotopical inverse diagram models (Kapulkin and Lumsdaine
2021), indexed respectively by the homotopical inverse categories

E

V1 V2

π1 π2 and R E V.
pe p1

p2

They are also closely related to the univalent parametricity translation of Tabareau, Tanter,
and Sozeau (2021).

We only define these models for a democratic base model, although variants of the
constructions exist for an arbitrary base model.

Construction 4.19. For any democratic model M of HoTT, we construct another model
PathM, called the path-model of M. We define it as a displayed model over M×M.
• An object of PathM displayed over Γ1,Γ2 is an equivalence

Γe :: RelEquiv(Γ1,Γ2).

• A morphism of PathM from Γe to ∆e displayed over f1 :: Γ1 → ∆1 and f2 :: Γ2 → ∆2 is a
function

fe :: Γe(γ1, γ2)→ ∆e(f1(γ1), f2(γ2)).

• A type of PathM over Γe and displayed over A1 :: Γ1 → Un and B1 :: Γ2 → Un is a family
of equivalences

Ae :: (γe : Γe(γ1, γ2))→ RelEquiv(A1(γ1), A2(γ2)).

• A term of PathM of type Ae and displayed over a1 :: (γ1 : Γ1) → A1(γ1) and B1 :: (γ2 :
Γ2)→ A2(γ2) is a family

ae :: (γe : Γe(γ1, γ2))→ Ae(a1(γ1), a2(γ2)).

• The type formers are interpreted pointwise over γe : Γe(γ1, γ2) using the constructions
of subsection 4.5. For example,

PathM.IdAe(xe, ye) ≜ λγe 7→ IdRelEquiv(Ae(γe), xe(γe), ye(γe)).

• The rest of the structure corresponds to a standard binary parametricity construction.
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The loop-model LoopM of a model M is the pullback

LoopM PathM

M M×M

⌟
π ⟨π1,π2⟩

⟨id,id⟩

Construction 4.20. For any democratic model M of HoTT, we construct another model
ReflLoopM, called the reflexive-loop-model of M. We define it as a displayed model over
LoopM.
• An object of ReflLoopM displayed over Γ,Γe is a reflexivity structure

Γr :: isRefl(Γe).

• A morphism of ReflLoopM from Γr to ∆r and displayed over f, fe is a map

fr :: Γr(γ, γe)→ ∆r(f(γ), fe(γe)).

• A type of ReflLoopM displayed over A :: Γ→ Un and Ae :: ∀γ γe → RelEquiv(A(γ), A(γ))
is a family of reflexivity structures

Ar :: (γr : Γr(γ, γe))→ isRefl(Ae(γe)).

• A term of ReflLoopM of type Ar displayed over a :: (γ : Γ) → A(γ) and ae :: ∀γ γe →
Ae(γe, a(γ), a(γ)) is a family of reflexivity structures

ar :: (γr : Γr(γ, γe))→ Ar(a(γ), ae(γe)).

• The type formers are interpreted using the constructions of subsection 4.5.
• The rest of the structure corresponds to a standard parametricity construction.

Proposition 4.21. The projection ⟨π1, π2⟩ : PathM →M×M is a split fibration.

Proof. We first prove that ⟨π1, π2⟩ : PathM → M ×M satisfies the identification lifting
property. Take a term x of PathM. It consists of an equivalence Γe :: RelEquiv(Γ1,Γ2),
a family Ae :: ∀γe → RelEquiv(A1(γ1), A2(γ2)) of equivalences and a family xe :: ∀γe →
Ae(γe, x1(γ1), x2(γ2)). Take an identification p in M×M between ⟨π1, π2⟩(x) and a term y.
It consists of p1 :: ∀γ1 → IdA1(γ1)(x1(γ1), y1(γ1)) and p2 :: ∀γ2 → IdA2(γ2)(x2(γ2), y2(γ2)). We
then define ye :: ∀γe → Ae(γe, y1(γ1), y2(γ2)) by transporting xe over p1 and p2. We obtain
pe :: ∀γe → IdRelEquiv(Ae, xe, ye)(p1(γ1), p2(γ2)) as a witness of the fact that ye is a transport
of xe over p1 and p2. Then (ye, pe) is a lift of the identification (y, p) against ⟨π1, π2⟩. Thus
⟨π1, π2⟩ is a split fibration.

Proposition 4.22. The projections π1, π2 : PathM →M are split trivial fibrations.

Proof. We prove that π1 satisfies the term lifting property, the case of π2 is symmetric.
Take a type A in PathM. It consists of an equivalence Γe :: RelEquiv(Γ1,Γ2) and a family
Ae :: ∀γe → RelEquiv(A1(γ1), A2(γ2)) of equivalences. Take a term of type π1(A) in M, i.e.
a term x1 :: ∀γ1 → A1(γ1). We then define a term x2 :: ∀γ2 → A2(γ2) by transport over the
equivalences Γe and Ae. We have an element xe :: ∀γe → Ae(γe, x1(γ1), x2(γ2)) witnessing
that x2 was defined by transporting x1. Then (x1, x2, xe) is a lift of the term x1 along π1.
Thus π1 is a split trivial fibration.

Proposition 4.23. The projection πe : ReflLoopM → LoopM is a split fibration.

Proof. Similar to Proposition 4.21.
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Proposition 4.24. The projection π : ReflLoopM →M is a split trivial fibration.

Proof. Similar to Proposition 4.22.

Proposition 4.25. The constructions of PathM and ReflLoopM are functorial in M.

Proof. This follows from the fact that all components of PathM and ReflLoopM are expressed
in the “language of HoTT”, e.g. as finite limits of components of M.

This can be stated more precisely using functorial semantics: the democratic models of
HoTT are algebras for an essentially algebraic theory T dem

HoTT. The model M is a left exact
functor M : T dem

HoTT → Set. We then observe that PathM = M ◦ P and ReflLoopM = M ◦R
for some left exact functors P,R : T dem

HoTT → T dem
HoTT (which can be constructed using the

universal property of T dem
HoTT). The functoriality is then immediate.

Proposition 4.26. Let F : M→ N be a morphism between democratic models of HoTT. If
π : ReflLoopM →M admits a section r and F is an algebraic trivial cofibration, then F is a
split weak equivalence.

Proof. Same proof as Proposition 3.10.

5. Strict Rezk completions for models of HoTT

For most of this section, we work internally to cSet. The structure of the construction is the
same as in section 3, and most of the lemmas have the exact same proofs. In such case we
omit the proof and refer to the corresponding proof in section 3.

We say that a model M of HoTT has fibrant components if for every A : M.Tyn(Γ),
the set M.Tm(Γ, A) is fibrant. Note that as a special case, the sets M.Tyn(Γ) are fibrant,
since M.Tyn(Γ)

∼= M.Tm(Γ,Un).

Definition 5.1. We say that a model M of HoTT with fibrant components is complete
when:
• For every term x : M.Tm(Γ, A), the fibrant set (y : M.Tm(Γ, A))×(p : M.Tm(Γ, IdA(x, y)))

is contractible.

Definition 5.2. A strict Rezk completion of a global model M of HoTT with fibrant
components is a global complete model M, along with a morphism i : M→M such that
the external morphism 1∗□(i) : 1

∗
□(M) → 1∗□(M) is a split weak equivalence of models of

HoTT.

Definition 5.3. A Cof-fibrancy structure over a model M consists of:
• For every term x : M.Tm(Γ, A), an extension structure

extTm(x) : HasExt((y : M.Tm(Γ, A))× (p : M.Tm(Γ, IdA(x, y))).

A Cof-fibrancy structure can be decomposed into operations

GlueTm : (Γ ∈M)(A : M.Ty(Γ))(x : M.Tm(Γ, A))(α : Cof)(y : [α]→M.Tm(Γ, A))

→ (p : [α]→M.Tm(Γ, IdA(x, y)))→ {M.Tm(Γ, A) | α ↪→ y},
glueTm : (Γ ∈M)(A : M.Ty(Γ))(x : M.Tm(Γ, A))(α : Cof)(y : [α]→M.Tm(Γ, A))

→ (p : [α]→M.Tm(Γ, IdA(x, y)))→ {M.Tm(Γ, IdA(x,GlueTm(x, y, p))) | α ↪→ p},
with ⟨GlueTm, glueTm⟩ = extTm.
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Lemma 5.4. If M is Cof-fibrant and a type A : M.Ty(Γ) is contractible, then M.Tm(Γ, A)
is trivially fibrant.

Proof. Write c : M.Tm(Γ, A) for the center of contraction of A. Given any y : M.Tm(Γ, A),
we have an identification pA(y) : M.Tm(Γ, IdA(c, y)).

Take a partial element x0 : [α]→M.Tm(Γ, A). We then have a total element

x ≜ GlueTm(c, [α 7→ (x0, pA(x0))])

extending x0.
This equips M.Tm(Γ, A) with an extension structure, as needed.

Proposition 5.5. If model M with fibrant components is Cof-fibrant, then it is complete.

Proof. By Proposition 2.5.

Let M be a global democratic model of HoTT. Similarly to the case of categories, we
want to prove that the Cof-fibrant replacement M of M a strict Rezk completion. In
order to use Lemma 2.7, we need to show that pseudo-reflexive graphs arising from the
pseudo-reflexive graph object

ReflLoopM PathM Mπe π1

π2

have weak coercion operations and are homotopical.

Definition 5.6. A weak coercion structure over a line Γ : I→ ObM consists of families

wcoer→s
Γ :: RelEquiv(Γ(r),Γ(s)),

wcohrΓ :: isRefl(wcoer→r
Γ )

of equivalences and reflexivity structures.
Given weak coercion structures wcoeΓ and wcoe∆, a weak coercion structure over a

line f : (i : I)→M(Γ(i),∆(i)) consists of families

wcoer→s
f :: wcoer→s

Γ (γ1, γ2)→ wcoer→s
∆ (f(γ1), f(γ2)),

wcohrf :: wcohrΓ(γ, γe)→ wcohr∆(f(γ),wcoe
r→r
f (γe)).

Given a weak coercion structure wcoeΓ, a weak coercion structure over a line
f : (i : I)→M.Ty(Γ(i)) consists of families

wcoer→s
A :: wcoer→s

Γ (γ1, γ2)→ RelEquiv(A(r, γ1), A(s, γ2)),

wcohrA :: wcohrΓ(γ, γe)→ isRefl(wcoer→r
A (γe)).

Given weak coercion structures wcoeΓ and wcoeA, a weak coercion structure over a
line a : (i : I)→M.Tm(Γ(i), A(i)) consists of families

wcoer→s
a :: (γe : wcoe

r→s
Γ (γ1, γ2))→ wcoer→s

A (γe, a(r), a(s)),

wcohra :: (γr : wcoh
r
Γ(γ, γe))→ wcohrA(γr,wcoe

r→r
a (γe)).

Construction 5.7. We construct a displayed model HasWCoeM over MI. As described
in Remark 3.25, we construct it as the limit of the diagram

base 7→MI,

path(r, s) 7→ PathM[⟨−r,−s⟩],
refl-loop(r) 7→ ReflLoopM[⟨−r⟩],
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over the diagram shape consisting of objects base, path(r, s) for r, s : I and refl-loop(r) for
r : I, such that base is terminal and with morphisms refl-loop(r)→ path(r, r) for r : I.

We can verify by unfolding the definition that the displayed objects, morphisms, types
and terms of this model are weak coercion structures over lines of objects, morphisms, types
and terms of M.

Proposition 5.8. If a model M has fibrant components, then the projection HasWCoeM →
MI is a split trivial fibration.

Proof. Same proof as Proposition 3.28.

Now assume that M is a global algebraically cofibrant model of HoTT with fibrant
components.

Lemma 5.9. Any algebraically cofibrant model is democratic; in particular, the model M is
democratic.

Proof. Write dem(M) for the democratic core of M. An object of dem(M) consists of an
object Γ ∈M together with a closed type KΓ an isomorphism Γ ∼= 1.KΓ. The rest of the
structure is inherited from M. Then the projection π : dem(M) → M is a split trivial
fibration. Since M is algebraically cofibrant, the projection admits a section, which witnesses
the democracy of M.

Construction 5.10. We write M for the Cof-fibrant replacement of M, i.e. the model
freely generated by a morphism i : M→M and a Cof-fibrancy structure.

Proposition 5.11. The model M is democratic.

Proof. This follows from the fact that M is obtained from the democratic model M by only
adding new terms and equations between terms.

Lemma 5.12. The map iI : MI →MI exhibits MI as a Cof-fibrant replacement of MI.

Proof. Same proof as Lemma 3.30.

Proposition 5.13. The displayed model HasWCoeM can be equipped with a displayed Cof-
fibrancy structure.

Proof. Take a cofibration α and lines Γ : I → ObM, A : (i : I) → M.Ty(Γ(i)), x : (i :

I) → M.Tm(Γ(i), A(i)), y : [α] → (i : I) → M.Tm(Γ(i), A(i)) and p : [α] → (i : I) →
M.Tm(Γ(i), IdA(i)(x(i), y(i))).

We need to define weak coercion structures over the linesG(−) = GlueTm(x(−), y(−), e(−))
and g(−) = glueTm(x(−), y(−), e(−)). They should match with the weak coercion structures
of y and p under α.

Over the context (γ1 : Γ).(γ2.Γ).(γe : wcoe
r→s
Γ (γ1, γ2)), the type

(Ge : wcoe
r→s
A (γe, G(r), G(s)))× (ge : Id

RelEquiv(wcoer→s
A (γe),wcoe

r→s
x (γe), Ge, g(r), g(s)))

is contractible (this follows from the definition of IdRelEquiv). By Lemma 5.4, this type has a
term

〈
wcoer→s

G (γe),wcoe
r→s
g (γe)

〉
that restricts to

〈
wcoer→s

y (γe),wcoe
r→s
p (γe)

〉
under α.

Over the context (γ : Γ).(γe.wcoe
r→s
Γ (γ, γ)).(γr : wcoh

r
Γ(γ, γe)), the type

(Gr : wcoh
r
A(γr,wcoe

r→r
G (γe)))× (ge : Id

isRefl(wcohrA(γr),wcoh
r
x(γr), Gr,wcoe

r→r
g (γr)))

is contractible (this follows from the definition of IdisRefl). By Lemma 5.4, this type has a
term

〈
wcohrG(γr),wcoh

r
g(γr)

〉
that restricts to

〈
wcohry(γr),wcoh

r
p(γr)

〉
under α.
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Proposition 5.14. The displayed model HasWCoeM →MI admits a global section.

Proof. By Proposition 5.8, HasWCoeC → CI is a split trivial fibration. Since C is algebraically
cofibrant, it admits a section. By composing this section with HasWCoeC → HasWCoeC , we
obtain a map CI → HasWCoeC displayed over iI : CI → CI.

By combining this with Proposition 5.13, we can use the universal property of CI

from Lemma 5.12 to obtain a section of HasWCoeC → CI.

As a consequence, every object, morphism, type or term of M can be equipped with a
weak coercion structure wcoe−.

Proposition 5.15. The model M has fibrant components.

Proof. We use Lemma 2.7 for A = (Γ : ObM)×M.Ty(Γ) and B(Γ, X) = M.Tm(Γ, X). The
families EA, RA, EB and RB are the corresponding finite limits of components of PathC and
ReflLoopC , namely:

EA((Γ1, X1), (Γ2, X2)) = (Γe : RelEquiv(Γ1,Γ2))× (Xe : ∀γe → RelEquiv(X1(γ1), X2(γ2))),

RA((Γ, X), (Γe, Xe)) = (Γr : isRefl(Γe))× (Xe : ∀γr → isRefl(Xe(γe))),

EB((Γe, Xe), a1, a2) = ∀γe → Xe(γe, a1, a2),

RB((Γr, Xr), a, ae) = ∀γr → Xr(γr, a, ae).

By Proposition 5.14, we have the required operations wcoe and wcoh.
It remains to construct extension structures

∀(Γe, Xe) a1 → HasExt((a2 : ∀γ2 → X2(γ2))× (∀γe → Xe(γe, a1(γ1), a2))),

∀(Γr, Xr) a→ HasExt((ae : ∀γe → Xe(γe, a(γ1), a(γ2)))× (∀γr → Xr(γr, a(γ), ae))).

We use Lemma 5.4 in both cases (relying on Π-types to move to the empty context). The
contractibility of (a2 : ∀γ2 → X2(γ2))× (∀γe → Xe(γe, a1(γ1), a2)) follows from Γe.

←−
fun and

Xe.
−→
fun. The contractibility of (ae : ∀γe → Xe(γe, a(γ1), a(γ2))) × (∀γr → Xr(γr, a(γ), ae))

relies on Γe.
←−
fun, Γr.refl and Xr.refl.

In fact the contractibility witnesses can be chosen to be ΠRelEquiv(Γe, Xe).
−→
fun and

ΠisRefl(Γr, Xr).refl.

Lemma 5.16. The external model 1∗□(M) has the universal property of the fibrant replacement
of 1∗□(M).

Proof. Same as Lemma 3.35.

Proposition 5.17. The morphism 1∗□(i) : 1
∗
□(M)→ 1∗□(M) is a split weak equivalence.

Proof. Same as the proof of Proposition 3.36, relying on Proposition 4.26 and Lemma 5.16.

Theorem 5.18. Any global algebraically cofibrant model of HoTT with fibrant components
admits a strict Rezk completion.

Proof. We use the model M defined in Construction 5.10. By Proposition 5.15 it has
fibrant components. By Proposition 5.5 it is complete. By Proposition 5.17 the morphism
1∗□(i) : 1

∗
□(M)→ 1∗□(M) is a split weak equivalence.

Remark 5.19. The model of HoTT freely generated by any number of axioms (closed terms,
without any new equations) is algebraically cofibrant.
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6. Homotopy canonicity

We will prove the following theorem.

Theorem 6.1 (Homotopy canonicity). Let S be the initial model of HoTT.
For every closed term b : S.Tm(1,B), there is an element of

S.Tm(1, Id(b, true)) + S.Tm(1, Id(b, false)).

We work internally to cSet.
Let S be the initial model of HoTT. Because S is the initial algebra of an external

generalized algebraic theory, it coincides with the external syntax of HoTT, i.e. the external
model 1∗□(S) is also initial among external models of HoTT.

Write S for the Rezk completion of S, which exists by Theorem 5.18, as noted in Re-
mark 5.19.

Lemma 6.2. Let A : S.Tyn(Γ) be a type. If A is contractible in S, then S.Tm(Γ, A) is
contractible.

Proof. Since S is complete, we have equivalences S.Tm(Γ, IdA(x, y)) ≃ (x ∼ y).
The type A is contractible in S, which means we have a center of contraction a0 :

S.Tm(Γ, A) and an identification p : S.Tm(Γ.(x : A).(y : A), IdA(x, y)). Since S is complete,
we have a path (x ∼ y) in S.Tm(Γ.(x : A).(y : A), IdA(x, y)). Now given x′, y′ : S.Tm(Γ, A),
consider the substitution ⟨x′, y′⟩ : S(Γ,Γ.(x : A).(y : A)). We have x[⟨x′, y′⟩] ∼ y[⟨x′, y′⟩], i.e.
x′ ∼ y′.

This shows that S.Tm(Γ, A) has a center of contraction and is a homotopy proposition.
It is therefore contractible.

Remark 6.3. More generally, A is contractible in S if and only if S.Tm(∆, A[f ]) is con-
tractible for any f : ∆→ Γ (looking at Γ→ Γ and Γ.A.A→ Γ suffices).

The model S being complete also implies the existence of an equivalence

id-to-path : S.Tm(Γ, IdA(x, y))→ (x ∼ y)

which sends refl to a homotopically constant path.

6.1. The canonicity model. In this subsection we define a (large) displayed higher-order
model S• over S, which will be used to prove canonicity. It is very similar to the displayed
higher-order model used to prove canonicity for MLTT, except that we use logical predicates
valued into fibrant sets.

A displayed type over a closed type A : S.Tyn(1) is a unary logical predicate valued in
the universe of n-small fibrant sets:

Ty•n(A) ≜ S.Tm(1, A)→ Setfibn .

A displayed term of type A• over a term a : S.Tm(1, A) is an element of the logical predicate
A• at a:

Tm•(A•, a) ≜ A•(a).
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6.1.1. Identity types. The logical predicate for identity types is defined as the HIT

Id• : ∀A x y (A• : Ty•(A)) (x• : A•(x)) (y• : A•(y))→ S.Tm(1, Id(A, x, y))→ Setfibn

generated by a single constructor

refl• : ∀A x (A• : Ty•(A)) (x• : A•(x))→ Id•(A•, x•, x•,S.refl(A, x)).

The displayed eliminator for the identity types is interpreted using the elimination
principle of Id•.

Lemma 6.4. There is an equivalence Id•(A•, x•, y•, refl) ≃ (x• ∼ y•).

Proof. It suffices to prove that (y• : A•(x))× Id•(A•, x•, y•, refl) is contractible.
The universal property of Id• implies that

(y : S.Tm(Γ, A))× (p : S.Tm(1, Id(A, x, y))× (y• : A•(x))× Id•(A•, x•, y•, p)

is contractible, so the result follows from the contractibility of (y : S.Tm(Γ, A)) × (p :
S.Tm(1, Id(A, x, y)), i.e. from S being complete.

6.1.2. Pi-types. Take a displayed type A• : Ty•n(A) and a family

B• : ∀(a : S.Tm(1, A)) (a• : A•(a))→ Ty•n(B[a]).

The logical predicate over the Π-type Π(A,B) is:

Π•(A•, B•) ≜ λf 7→ (∀(a : S.Tm(1, A)) (a• : A•(a))→ B•(a•, app(f, a))).

6.1.3. Sigma-types. Take a displayed type A• : Ty•n(A) and a family

B• : ∀(a : S.Tm(1, A)) (a• : A•(a))→ Ty•n(B[a]).

The logical predicate over the Σ-type Σ(A,B) is:

Σ•(A•, B•) ≜ λp 7→ (a• : A•(fst(p)))× (b• : B•(a•, snd(p))).

6.1.4. Boolean-types. The logical predicate over the Boolean-type B is the fibrant inductive
family generated by:

B• : S.Tm(1,B)→ Setfibn ,

true• : B•(true),

false• : B•(false).

6.1.5. W -types. Take a displayed type A• : Ty•n(A) and a family

B• : ∀(a : S.Tm(1, A)) (a• : A•(a))→ Ty•n(B[a]).

The logical predicate over the type W (A,B) is the fibrant inductive family generated by:

W • : S.Tm(1,W (A,B))→ Setfibn ,

sup• : ∀a f → (a• : A•(a))→ (∀b→ B•(a•, b)→W •(f(b)))→W •(sup(a, f)).
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6.1.6. Universes. Fix a universe level n.
The logical predicate for the n-th universe is

U•
n ≜ λA 7→ (S.Tm(1,El(A))→ Setfibn ).

In other words, elements of U•(A) are n-small logical predicates over closed terms of type
El(A).

We have isomorphisms El• : Tm•(U•
n, A)

∼= Ty•(A).

6.1.7. Univalence. Last but not least, we have to define the displayed univalence structure.
We recall the definitions of the displayed contractibility witnesses and equivalences.

isContr•(A•, c) = (x• : A•(fst(c)))× (∀y (y• : A•(y))→ Id•(A•, x•, y•, app(snd(c), y))),

isEquiv•(f•, e)

= (∀b b• → isContr•(λ(a, p) 7→ (a• : A•(a))× (p• : Id•(B•, f•(a•), b•, p)), app(e, b))),

Equiv•(A•, B•, f) = (f• : ∀a→ A•(a)→ B•(app(fst(f), a)))× isEquiv•(f•, snd(f)).

We start by relating these notions to cubical notions of contractibility and equivalences.

Lemma 6.5. Let A• : Ty•n(A) be a displayed type and c : S.Tm(1, isContr(A)) be a witness
of the contractibility of A.

Then there is an equivalence

isContr•(A•, c) ≃ (∀(a : S.Tm(1, A))→ isContr(A•(a))).

Proof. Since A is contractible in S, its set of terms S.Tm(1, A) is contractible by Lemma 6.2.
For any x, y : S.Tm(1, A), the set S.Tm(1, IdA(x, y)) is also contractible by Lemma 6.2.

We have the following chain of equivalences:

isContr•(A•, c)

≃ (x• : A•(fst(c)))× (∀y (y• : A•(y))→ Id•(A•, x•, y•, app(snd(c), y))) (Definition)

≃ ∀(a : S.Tm(1, A))→ (x• : A•(a))× (∀(y• : A•(a))→ Id•(A•, x•, y•, app(snd(c), a)))
(Contractibility of S.Tm(1, A))

≃ ∀(a : S.Tm(1, A))→ (x• : A•(a))× (∀(y• : A•(a))→ Id•(A•, x•, y•, refl))
(Contractibility of S.Tm(1, IdA(a, a)))

≃ ∀(a : S.Tm(1, A))→ (x• : A•(a))× (∀(y• : A•(a))→ (x• ∼ y•)) (By Lemma 6.4)

≃ ∀(a : S.Tm(1, A))→ isContr(A•(a)). (Definition of isContr)

Lemma 6.6. Let A• : Ty•n(A) and B• : Ty•n(B) be two displayed types, along with a displayed
map

f• : ∀a (a• : A•(a))→ B•(app(f, a))

and an element e : S.Tm(1, isEquiv(f)).
Then there is an equivalence

isEquiv•(A•, B•, e) ≃ (∀(a : S.Tm(1, A))→ isEquiv(f•a )).
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Proof. We have the following chain of equivalences:

isEquiv•(A•, B•, e)

≃ ∀b b• → isContr•(λ(a, p) 7→ (a• : A•(a))× (p• : Id•(B•, f•(a•), b•, p)), app(e, b))
(Definition)

≃ ∀b b• → ∀a p→ isContr((a• : A•(a))× (p• : Id•(B•, f•(a•), b•, p))) (By Lemma 6.5)
≃ ∀a b• → isContr((a• : A•(a))× (p• : Id•(B•, f•(a•), b•, refl)))

(Contraction of (b, p) to (a, refl))
≃ ∀a b• → isContr((a• : A•(a))× (p• : f•(a•) ∼ b•)) (By Lemma 6.4)

≃ ∀(a : S.Tm(1, A))→ isEquiv(f•a ). (Definition of isEquiv)

We can now interpret univalence in S•. Take a displayed type A• : Ty•n(A). We have to
construct

ua•(A•) : isContr•(λ(B,E) 7→ (B• : Tm(1, B)→ Setfibn )× Equiv•(A•, B•, E), ua(A)).

By Lemma 6.5, it suffices to prove, for every B : Tyn(1) and E : Equiv(A,B), the
contractibility of

(B• : S.Tm(1, B)→ Setfibn )× Equiv•(A•, B•, E).

By Lemma 6.2 and univalence in S, the set (B : S.Tyn) × S.Tm(1,Equiv(A,B))
is contractible. We can thus assume without loss of generality that (B,E) = (A, idA).
By Lemma 6.6, it then suffices to prove the contractibility of

(B• : S.Tm(1, A)→ Setfibn )× (f• : ∀a→ A•(a)→ B•(a))× (∀a→ isEquiv(f•a )).

We can move the quantification on a : S.Tm(1, A) outside of the contractibility condition.
It then suffices to prove, for every a, the contractibility of

(B• : Setfibn )× (f• : A•(a)→ B•(a))× isEquiv(f•).

This is exactly univalence for the universe Setfibn , which holds in cartesian cubical sets.

6.2. Homotopy canonicity. We have defined a displayed higher-order model S• of HoTT
over S. We can consider its displayed contextualization (sconing) SconeS• _ S. By the
universal property of the model S, we obtain a section J−K of SconeS• [i].

SconeS•

S S.
i

J−K

We can now prove homotopy canonicity:

Proof of Theorem 6.1. We have to prove that the model 1∗□(S), which is initial, satisfies
homotopy canonicity. Let b be a global element of S.Tm(1,B).

Applying the section J−K to b, we obtain a global element

JbK : B•(i(b)).

By the universal property of B•, we obtain a global element of

S.Tm(1, Id(i(b), true)) + S.Tm(1, Id(i(b), false)).
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Externally, this can be seen as an element of

1∗□(S).Tm(1, Id(i(b), true)) + 1∗□(S).Tm(1, Id(i(b), false)).

Since 1∗□(i) : 1
∗
□(S)→ 1∗□(S) is a split weak equivalence, we have a global element of

1∗□(S).Tm(1, Id(i(b), true)) + 1∗□(S).Tm(1, Id(i(b), false)),

as needed.

7. Future work

In this paper we have only performed the construction of the strict Rezk completion that
was needed for the proof of homotopy canonicity. To enable their use in other applications,
strict Rezk completions should be studied more abstractly in future work.

We have constructed strict Rezk completions for the generalized algebraic theories of
categories and of democratic models of HoTT. The two proofs already share a large part
of their structure; this should be abstracted into general constructions for any generalized
algebraic theories with a homotopy theory satisfying some conditions.

We have shown that strict Rezk completions exist in cartesian cubical sets, and that
the inclusions become split weak equivalences after externalization. It would be interesting
to generalize the constructions to other presheaf models such as De Morgan cubical sets or
(classically) simplicial sets. Since we use the axiomatization of Cavallo, Mörtberg, and Swan
(2020), our constructions are almost valid in De Morgan cubical sets, except for the fact that
we use diagonal cofibrations in the proof of Proposition 3.31.

The externalization functor 1∗□ : cSet→ Set should also be generalized to other inverse
image functors F ∗ : Psh(C) → Psh(A) such F ∗(Cof) ∼= {true, false}, perhaps satisfying
some other conditions. For applications, functors of the form ⟨id, 1□⟩ : A→ (A×□) seem
important.

As noted in Remark 3.15, the strict Rezk-completion can be seen as a form of fibrant
replacement, parametrized by a notion of cofibration. Generally, any (algebraic) weak
factorization system can be parametrized by a notion of cofibration. Christian Sattler has
suggested parametrizing whole homotopy theories ((semi) model structures) by a notion of
cofibration.

The extension structures of a strict Rezk completion M of a model M are not strictly
stable under substitution: we do not have extTm(x[f ]) = extTm(x)[f ] as a strict equality when
x ∈M.Tm(Γ, A) and f ∈M(∆,Γ). They are however weakly stable, since contractibility is
a homotopy proposition. It would be interesting to know whether strict Rezk completion
with strictly stable extension structures can be constructed. Having strictly stable extension
operations would make them available internally to Psh(M).
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