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ABSTRACT. We give a new constructive proof of homotopy canonicity for homotopy type theory (HoTT). Canonic-
ity proofs typically involve gluing constructions over the syntax of type theory. We instead use a gluing construction
over a “strict Rezk completion” of the syntax of HoTT. The strict Rezk completion is specified and constructed in
the topos of cartesian cubical sets. It completes a model of HoTT to an equivalent model satisfying a saturation
condition, providing an equivalence between terms of identity types and cubical paths between terms. This
generalizes the ordinary Rezk completion of a 1-category.

1. INTRODUCTION

Voevodsky conjectured (Voevodsky 2010) that the extension of Martin-Löf Type Theory (MLTT) with his
univalence axiom remains constructive. More precisely, homotopy canonicity for Homotopy Type Theory
(HoTT) is the statement that any closed term of the type of natural numbers in the syntax of HoTT is
identifiable with a numeral, where the identification is witnessed by some closed term of the identity type.

Strict canonicity for Martin-Löf Type Theory can be proven by a model construction known as categorical
gluing. It involves gluing together the syntax of MLTT with the category of sets. The gluing is specified by
the global sections functor, which assigns to every syntactic context its set of closing substitutions (gluing
along the global sections functor is also called sconing). For proofs of homotopical properties of the syntax,
such as homotopy canonicity for HoTT, the set-valued global sections functor should be replaced by a
homotopical global sections functor, valued in ∞-groupoids (or spaces). However, coherence issues arise, as
the syntax has a strict underlying 1-category S , while ∞-groupoids form an ∞-category (perhaps presented
by some 1-category, such as simplicial sets with the Kan-Quillen model structure).

For any syntactic context Γ ∈ S , one wishes to define an ∞-groupoid of closing substitutions into Γ. Its set
of objects should be the set S(1S , Γ) of closing substitutions, but the higher cells should be given by iterated
identity types S(1S , IdΓ(−,−)), etc. Unfortunately, defining these spaces in a way that is strictly functorial
in Γ, e.g. a functor S → sSet, does not seem possible as a direct construction.

Sattler and Kapulkin (2019) obtained a proof of homotopy canonicity for HoTT, although the details of the
proof have not been made public yet. Their strategy is to present the homotopical global sections functor
using a span

S ← Fr(S)→ sSet.
Here Fr(S) is the frame model over S , the homotopical inverse diagram model indexed by the semi-simplex
category ∆+. The frame model extends the syntax with more data, and this additional data allows for the
definition of a strict functor Fr(S)→ sSet. The map Fr(S)→ S is a weak equivalence of models, ensuring
that the span morally corresponds to a functor S → sSet. Using simplicial sets leads to a non-constructive
proof of homotopy canonicity, but a constructive proof can be achieved by gluing along some more complex
functor Fr(S)→ cSetdM into (De Morgan) cubical sets.

In this paper, we propose another way to solve the issue of the definition of a homotopical global sections
functor. We work internally to the topos cSet of cartesian cubical sets. In the internal language of this topos,
we have a notion of fibrant set; the fibrant sets can be seen as ∞-groupoids. This topos has been equipped
with the structure of a model of HoTT with universes classifying the fibrant sets by Angiuli et al. (2021).
There is an internal copy of the syntax S of HoTT; its components (sets of contexts, substitutions, etc.) are
fibrant but have the “wrong” homotopy types (they are 0-truncated). We will define another internal model
S with the following properties:
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• There is a morphism i : S → S of models of HoTT. Furthermore, after externalization (restriction to
the empty cubical context), i becomes a weak equivalence of models of HoTT.
• The model S is saturated, meaning that its components are fibrant and have the correct homotopy

types; in particular we have equivalences

(x ∼ y) ≃ S .Tm(Γ, IdA(x, y)),

where (x ∼ y) is the set of paths between x and y in S .Tm(Γ, A). More precisely, the set (y :
S .Tm(Γ, A))× S .Tm(Γ, IdA(x, y)) should be contractible for any term x.

Once this model S is constructed, we have a well-behaved homotopical global sections functor, sending a
syntactic context Γ to the fibrant set S(1, i(Γ)). Homotopy canonicity for S then follows from a standard
gluing argument. In the strict canonicity proof for MLTT, a closed type A is sent to a unary logical predicate

JAK : S .Tm(1, A)→ Set.

For the homotopy canonicity proof, we instead interpret a closed type A as a logical predicate

JAK : S .Tm(1, i(A))→ Setfib

valued in fibrant sets.
We call S the strict Rezk completion of S . Indeed, its specification is closely related to the specification of

Rezk completions of categories (Ahrens, Kapulkin, and Shulman 2015). If C is a category in HoTT (meaning
that the categorical laws hold up to identification), then its Rezk completion is a category C satisfying the
following properties:

• There is a weak equivalence F : C → C (a functor that is essentially surjective and fully faithful).
• The category C is univalent: objects of C have the correct homotopy types; in particular we have

equivalences
(x ∼ y) ≃ IsoC(x, y)

between identifications in ObC and isomorphisms. This is best expressed by asking for the con-
tractibility of (y : ObC)× IsoC(x, y).

Strict Rezk completion differs from the ordinary Rezk completion for categories. The ordinary Rezk
completion can be specified (and constructed) fully in HoTT; the categorical and functorial laws are then
expressed using identifications in HoTT. The strict Rezk completion cannot be specified in HoTT: it needs a
notion of strict equality (available in cubical sets, and more generally in models of two-level type theory (An-
nenkov et al. 2023)). This is crucial, because the notion of model of HoTT cannot be expressed without strict
equalities, or at least not without introducing an infinite tower of additional coherence data. Kraus (2021)
explains that internally to HoTT, neither set-truncated nor wild models are well-behaved.

Strict Rezk completions can be specified not only for models of HoTT, but also for the categories of
algebras of generalized algebraic theories with a suitable homotopy theory. In this paper, we consider the
case of 1-categories with the canonical model structure, and models of HoTT with an algebraic variant of
the left semi-model structure introduced by Kapulkin and Lumsdaine (2018). We leave generalization to
other theories to future work; we expect that our construction of the strict Rezk completion should work for
combinatorial algebraic left semi-model structures satisfying some additional assumptions.

The main idea behind the construction of the strict Rezk completion is to reformulate the notion of
saturation in a way that interacts well with the cubical structure. Saturation is defined using contractibility
conditions, and in cubical presheaf models, the notion of contractibility can be expressed in two ways:

(1) Using the usual definition from HoTT: isContr(X) ≜ (x : X)× (∀y→ x ∼ y).
(2) Using the cubical structure: a set is trivially fibrant if any partial element can be extended to a total

element.
For fibrant sets, both definitions are logically equivalent. For arbitrary sets however, (2) is better behaved.

Our definition of the strict Rezk completion relies on the notion of trivial fibrancy: the strict Rezk
completion C of a category C is defined as the free extension of C by extension structures for the sets
(y : ObC) × IsoC(x, y). We then have to prove that this category has fibrant components and that the
externalization of the functor i : C → C is a weak equivalence. This generalizes a construction by Cherubini,
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Coquand, and Hutzler (2023) of the propositional truncation without homogeneous fibrant replacement in
cubical sets. In fact, their construction of the propositional truncation can be seen as the simplest example
of a strict Rezk completion (for the category of sets, equipped with a homotopy theory presenting the
propositions).

Related work. This work builds upon the axiomatic development the semantics of cubical type theories (Co-
hen et al. 2017) in the internal language of toposes (Orton and Pitts 2016; Licata et al. 2018; Angiuli et al. 2021;
Cavallo, Mörtberg, and Swan 2020). The definition of the strict Rezk completion using trivial fibrancy is
related to Glue-types and to the equivalence extension property. The proof of fibrancy of the components of
the strict Rezk completion is similar to the proof of fibrancy of the universes in the cubical presheaf models.

We also rely on the left-semi model structure on categories of models of type theories from Kapulkin
and Lumsdaine 2018, and on homotopical inverse diagram models (Kapulkin and Lumsdaine 2021). This
left semi-model structure presents an ∞-category of models. The ∞-type theories of Nguyen and Uemura
(2022) have ∞-categories of space-valued models, but relating these space-valued models to the set-valued
models of a 1-type theory is not easy. The strict Rezk completion is a way to relate set-valued models and
space-valued models of type theory, without using ∞-categorical tools.

Some canonicity and normalization results have previously been obtained for type theories with univalent
universes. A homotopy canonicity result for a 1-truncated type theory with a univalent universe of sets
has been obtained by Shulman (2014). Strict canonicity for cubical type theory was first proven by Huber
(2019). Coquand, Huber, and Sattler (2022) have used gluing constructions to prove homotopy and strict
canonicity for cubical type theory. Normalization for cubical type theory has been proven by Sterling and
Angiuli (2021). For cubical type theory, taking a strict Rezk completion of the syntax is not needed, because
the cubical structure of the syntax automatically endows it with the correct higher dimensional structure.

Outline. We begin in section 2 by reviewing the axiomatization of Angiuli et al. (2021) of the cartesian
cubical set model in the internal language of a topos. We use the notion of weak composition structure due
to Cavallo, Mörtberg, and Swan (2020). In section 3 we specify and construct the strict Rezk completion for
1-categories. The goal to show the main ideas of this work in a relatively simple setting; the construction of
the strict Rezk completion for models of HoTT will follow the same structure.

In section 4 we detail the semantics of our variant of HoTT, which has a cumulative hierarchy of univalent
universes, Σ-types, Π-types, booleans, unit-types, empty-types, W-types and coequalizers (with weak
computation rules for the point constructor). We also define part of the homotopy theory of models of HoTT,
following Kapulkin and Lumsdaine (2018). In particular, path models and reflexive-loop models, which are
instances of homotopical inverse diagram models (Kapulkin and Lumsdaine 2021), play an important role.
Then in section 5 we specify and construct the strict Rezk completion for models of HoTT.

Finally, in section 6, we prove homotopy canonicity for HoTT, relying on the strict Rezk completion of the
syntax.

Agda formalization. The constructions of path and reflexive-loop models of HoTT have been partly
formalized in Agda. The formalization is available at https://rafaelbocquet.gitlab.io/Agda/
20230925_StrictRezkCompletionsAndHomotopyCanonicity/.

Acknowledgments. I thank Christian Sattler for discussions about this work. His comments on an early
draft of this paper have led to simplifications of the proof methods.

2. BACKGROUND: CARTESIAN CUBICAL SETS

Most of our development takes place internally to the topos cSet of presheaves over the cartesian cube
category □, or internally to any topos satisfying the axioms of Angiuli et al. (2021). We use the notion of weak
composition structure from Cavallo, Mörtberg, and Swan (2020), but we also rely on diagonal cofibrations,
so our development is valid in cartesian cubical sets but not in De Morgan cubical sets.

We recall the cubical structure that is available in the internal language of such a topos.

https://rafaelbocquet.gitlab.io/Agda/20230925_StrictRezkCompletionsAndHomotopyCanonicity/
https://rafaelbocquet.gitlab.io/Agda/20230925_StrictRezkCompletionsAndHomotopyCanonicity/
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2.1. Interval and cofibrations. There is an interval I : Set, with two points 0, 1 : I such that 0 ̸= 1.
There is set Cof of cofibrations. Every cofibration α has an associated proposition [α], and the map

[−] : Cof ↪→ Ω is a monomorphism.
Cofibrations are closed under interval equalities (i = j), binary and nullary conjunctions ((α ∧ β) and ⊤),

binary and nullary disjunctions ((α ∨ β) and ⊥) and quantification over the interval (∀i : I.α(i)).
Diagonal cofibrations (interval equalities that are not of the form (i = ε) for ε ∈ {0, 1}) are only used in

the proofs of propositions 5.8 and 3.24.
Given a cofibration α and a set X, an element x : [α]→ X is said to be a partial element of X. In that case,

a total element x′ : X is said to extend x if [α] implies that x = x′. We write {X | α ↪→ x} for the set of total
elements of X extending x.

A partial element in [α] → X may be written [α 7→ x]. When α is a disjunction (ϕ ∨ ψ), we may write
[ϕ 7→ xϕ, ψ 7→ xψ] for the unique element of [ϕ ∨ ψ] → X that restrict to xϕ under ϕ and xψ under ψ,
assuming [ϕ ∧ ψ]→ (xϕ = xψ). We write [] for the unique element of [⊥]→ X.

Let A : I→ Set be a line of sets with two points x0 : A(0) and x1 : A(1). A dependent path p : x0 ∼A x1
is a map p : (i : I) → A(i) such that p(0) = x0 and p(1) = x1. A non-dependent path in A : Set is a path
over the constant line (λ_ 7→ A).

We will use the symbols (∼) for paths, (≃) for equivalences, and (∼=) for isomorphisms.

2.2. Global elements. When X is a global type of the internal language of cSet, we write 1∗□(X) for the
external set of global elements of X. This can also be identified with the evaluation of X at the terminal
object 1□ of the cartesian cube category. The interaction between internal and external reasoning could
also be expressed using modalities, e.g. either crisp type theory (Shulman 2018) or the dependent right
adjoint (Birkedal et al. 2020) corresponding to the inverse image 1∗□ : cSet→ Set.

We also rely on 1∗□ being a functor preserving finite limits; in particular it acts on algebras and homo-
morphisms of any essentially algebraic theory, e.g. if C is an internal category, then 1∗□(C) is an external
category.

We know that 1∗□(Cof) ∼= {true, false}, and that the corresponding map [−] : {true, false} → 1∗□(Ω) selects
the propositions ⊤ and ⊥. Indeed, the only sieves over the terminal object 1□ are ⊤ and ⊥.

2.3. Tinyness of the interval. The interval is tiny, which means that the exponential functor (−)I : cSet→
cSet has a right adjoint (−)I. This is an external statement; it can be internalized by saying that the global
functor (−)I : Setg → Setg has a right adjoint, where Setg is the global category of global sets. Most of the
time, we don’t use the right adjoint directly. Instead, we use the following consequence:

Lemma 2.1 (Coquand, Huber, and Sattler 2022, Lemma 2.2). Let A be a global set and B be a global family over
AI. Then we have a global family BI over A with a bijection of global elements

1∗□((a : X)→ BI( f (a))) ∼= 1∗□((a : XI)→ B( f ◦ a))

natural in global f : X → A.
The construction (−)I may be chosen so that:
(1) If B is i-small, then so is BI.
(2) The induced isomorphism (λa→ B( f ◦ a))I

∼= (BI ◦ f ) is the identity. □

In the following lemma, a subfinitary essentially algebraic theory is an essentially algebraic theory in
which operations can additionally depend on partial elements. For example, given ϕ : Ω, the signature
X : Set, f : (ϕ → X) → X corresponds to such a theory. They have functorial semantics in subfinitely
complete categories (finitely complete categories together with products indexed by propositions).

Lemma 2.2. Let F : T1 → T2 be a morphism of global subfinitary essentially algebraic theories. Write (L ⊣ R) for the
induced adjunction between their global categories of global algebras. Then (−)I commutes with the left adjoint L.

Proof. We translate the statement to the functorial semantics of subfinitary essentially algebraic theories.
The morphism F : T1 → T2 is a left exact functor between subfinitely complete categories. We write Setg

for the global category of global sets. The categories of global algebras of T1 and T2 are Lex(T1, Setg) and
Lex(T2, Setg). The right adjoint R : Lex(T2, Setg)→ Lex(T1, Setg) is precomposition with F.
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Since both (−)I and (−)I preserve limits, they induce adjunctions ((−)I ⊣ (−)I) on Lex(T1, Setg) and
Lex(T2, Setg).

Now observe that R commutes with (−)I, since R acts by pre-composition while (−)I acts by post-
composition. The commutation of L with (−)I is then the transpose of the commutation of R with (−)I. □

2.4. Kan operations. We review the definitions and properties of the Kan operations, which are used to
define the notions of fibrancy and trivial fibrancy. We use the notion of weak composition structure due
to Cavallo, Mörtberg, and Swan (2020).

Definition 2.3. A weak composition structure for A : I→ Set consists of:
• For every r, s : I, α : Cof, t : [α] → (s : I) → A(s) and b : A(i) such that [α] → t(r) = b, there is an

element
wcomr→s

A (t, b) : A(s)
such that [α]→ wcomr→s

A (t, b) = t(s).
• There is a family of paths

wcomr
A(t, b) : wcomr→r

A (t, b) ∼ b
such that [α]→ wcomr

A(t, b) = (λ_ 7→ b). ⌟

This defines a global family HasWCom : SetI → Set. We obtain a global family HasWComI : Set → Set
by lemma 2.1. Elements of HasWComI(X) are called fibrancy structures over X, and sets equipped with a
fibrancy structure are called fibrant sets.

The notion of weak composition structure can be reformulated in terms of limits and split surjections, this
will be used in the proof of lemma 3.23.

Lemma 2.4. A line A : I→ Set has a weak composition structure if and only for every r, s : I and α : Cof the map

(x : A(s))× ((r = s)→ {(y : A(r))× (x ∼ y) | α ↪→ (x, λ_ 7→ x)})
→ (t : [α]→ A(s))× (b : (r = s)→ A(r))× ([α] ∧ (r = s)→ t = b),

(x,−) 7→ (x, x, refl).

is a split surjection.
Note that the domain of that map is a limit of the diagram

A(s)[α]∧(r=s) (A(s)I)
(r=s)

A(s)

while the codomain is a limit of

A(s)[α] A(s)[α]∧(r=s) A(s)(r=s). □

Definition 2.5. An extension structure for a set X is the data, for every α : Cof and partial element x : [α]→ X,
of a total element

extX(x) : {X | α ↪→ x}. ⌟

We write HasExt for the family of extension structures. A set equipped with an extension structure is said
to be trivially fibrant.

In cubical models, a fibrant set is contractible if and only if it has an extension structure. For non-fibrant
sets, or sets that are not yet known to be fibrant, extension structure are better behaved than the usual
definition of contractibility.

Proposition 2.6 (Cohen et al. 2017, Lemma 5). For any set X, there is a logical equivalence

HasExt(X)↔ (HasWComI(X)× isContr(X)),

where
isContr(X) = (x : X)× ((y : X)→ (x ≃ y)).

In other words, a set is trivially fibrant if and only if it is fibrant and contractible.
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Proof. We prove both implications.
(⇐): Assume that X is fibrant and contractible. We equip X with an extension structure.

Take a partial element x : [α] → X. Write x0 : X for the center of contraction of X. Since X is
contractible, we have a partial path p : [α]→ x0 ≃ x.

Now extX(x) ≜ wcom0→1
X ([α i 7→ p(i)], x0) is a total element extending x.

(⇐): Assume that X has an extension structure.
We first prove that X is contractible. We can find a center of contraction ext([]) by extending the

empty partial element. Given x : X, y : X and i : I, we can define an element p(i) = ext([(i = 0) 7→
x, (i = 1) 7→ y]). Then p : I→ X is a path between x and y, as needed

We now prove that X is fibrant, by defining a map

(X : Set)×HasExt(X)→ HasWComI(X).

By lemma 2.1, it suffices to construct a map

(X : SetI)× ((i : I)→ HasExt(X(i)))→ HasWCom(X).

We pose

wcomr→s
X (t, b) ≜ extX(s)([α 7→ t(s)]),

wcomr
X(t, b, i) ≜ extX(r)([α 7→ t(r), (i = 0) 7→ wcomr→r

X (t, b), (i = 1) 7→ b]). □

For a universe level n, the universe Setfibi of n-small fibrant sets is defined as

Setfibn ≜ (A : Setn)×HasWComI(A).

As shown by Cavallo, Mörtberg, and Swan (2020), it is univalent and closed under Π-types, Σ-types,
Path-types, Glue-types, etc.

The proof of fibrancy of the universe relies on Glue-types (or on the equivalence extension property).
We give an abstract generalization of that construction, which we will use to prove the fibrancy of the
components of the strict Rezk completions. A pre-reflexive graph is a diagram indexed by the category

R E V,
pe

p1

p2

with p1 ◦ pe = p2 ◦ pe.
This category is an inverse replacement of the indexing category for reflexive graphs. The object V

corresponds to vertices, the object E corresponds to edges, and the object R corresponds to reflexive loops.
A pre-reflexive graph in Set is a triple (A, EA, RA), where

A : Set,

EA : (a1 : A)(a2 : A)→ Set,

RA : (a : A)(ae : EA(a, a))→ Set.

Throughout the paper, we will use the same notations when quantifying over the elements of a pre-reflexive
graph (a : A, ae : EA(a1, a2) and ar : RA(a, ae). We may implicitly quantify over some elements, e.g.
quantifying over ae : EA(a1, a2) may implicitly quantify over a1, a2 : A.

Lemma 2.7. Assume given the data of a global dependent pre-reflexive graph (B, EB, RB) over a base pre-reflexive
graph (A, EA, RA):

A : Set,
EA : A→ A→ Set,

RB : (a : A)(ae : EA(a, a))→ Set,
B : A→ Set,

EB : EA(a1, a2)→ B(a1)→ B(a2)→ Set,

RB : RA(a, ae)→ (b : B(a))(be : EB(ae, b, b))→ Set.
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We also assume (globally) the following conditions:

A and B have weak coercion structures: For any a : I → A, we have wcoer→s
a : EA(a(r), a(s)) and

wcohr
a : RA(a,wcoer→r

a ) and for any b : (i : I)→ B(a(i)) we have wcoer→s
b : EB(wcoe

r→s
a , b(r), b(s)) and

wcohr
b : RB(wcoh

r
a, b,wcoer→r

b ).
B is homotopical: For any b1 : B(a1) and ae : EA(a1, a2), the set (b2 : B(a(s))) × (be : EB(ae, b, be)) is

trivially fibrant, and that for any b : B(a) and ar : RA(a, ae), the set (be : EB(ae, b, b))× (br : RB(ar, b, be))
is trivially fibrant.

Then B is a family of fibrant sets.

Proof. By lemma 2.1, it suffices to construct a global element of (a : AI)→ HasWCom(λi 7→ B(a(i))).
Take r : I, a cofibration α : Cof and elements t : [α] → (s : I) → B(a(s)) and b : B(a(r)) such that

[α]→ t(r) = b. We use the homotopicality of B to extend some partial elements.
Given s : I, we let w(s) be an element of (b2 : B(a(s)))× (be : EB(wcoe

r→s
a , b, be)) extending

[α 7→ (t(s),wcoer→s
t )].

We let d be an element of (be : EB(wcoe
r→r
a , b, b))× (br : RB(wcoh

r
a, b, be)) extending

[α 7→ (wcoer→r
t ,wcohr

t)].

Given i : I, we let w(i) be an element of (b2 : B(a(r)))× (be : EB(wcoe
r→r
a , b, be)) extending

[α 7→ (t(r),wcoer→r
t ), (i = 0) 7→ w(s), (i = 1) 7→ (b, d.1)].

We can then define a weak composition structure as follows:

wcomr→s
B(a(−))(t, b) = w(s).1,

wcomr
B(a(−))(t, b, i) = w(i).1. □

2.5. Propositional truncation without homogeneous fibrant replacement. The propositional truncation
of a fibrant set can be defined as a higher inductive type. The semantics of higher inductive types in cSet
involves a set freely generated by the constructors of the higher inductive type and additional constructors
ensuring fibrancy (a form of fibrant replacement).

As observed by Cherubini, Coquand, and Hutzler (2023), the propositional truncation can actually be
defined without fibrant replacement, when trivial fibrancy is used to express propositionality (recall that
isProp(X)↔ (X → isContr(X))).

We recall how to perform this construction (in the simpler case of global sets).

Theorem 2.8 (Cherubini, Coquand, and Hutzler 2023). Let X be a global fibrant set and X be the set freely
generated by a map i : X → X and by an element of X → HasExt(X), i.e. an operation

ext : (x : X) (α : Cof) (y : [α]→ X)→ {X | α ↪→ y}.

Then X is fibrant and i is surjective (up to paths), i.e. X is a propositional truncation of X.

Proof. We first prove the fibrancy, i.e. we construct an element of HasWComI(X). By lemma 2.1, it suffices to
construct an element of HasWCom(λ_ 7→ X). This weak composition structure is defined as follows:

wcomr→s
X (t, b) ≜ ext(b, [α 7→ t(s)]),

wcomr
X(t, b) ≜ ext(b, [α 7→ t(s), (i = 0) 7→ wcomr→s

X (t, b), (i = 1) 7→ b]).

(We could also use lemma 2.7, with A = 1, B = X, EB(−) = 1 and RB(−) = 1.)
Since X is fibrant, we can also construct its propositional truncation ∥ X ∥ as usual. The universal

properties of ∥ X ∥ and X provide a logical equivalence ∥ X ∥ ↔ X, implying that X is a propositional
truncation of X. □
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3. STRICT REZK COMPLETIONS OF CATEGORIES

In this section, we specify and construct the strict Rezk completions of categories. Some of the statements
of this section may have trivial assumptions, that is because the theory of categories is a bit too simple: the
category of category has a model structure and every category is cofibrant, while in general we may want to
consider left semi-model structures. We try to keep the statements and proofs as close to the general case as
possible.

3.1. Categories. We start by giving general definitions that can be interpreted either externally or internally
to cSet.

Definition 3.1. A category C consists of:

ObC : Set,
HomC : X → X → Set,

EqHomC : ∀x y→ HomC(x, y)→ HomC(x, y)→ Set,

id : ∀x → HomC(x, x),

_ ◦ _ : ∀x y z→ HomC(y, z)→ HomC(x, y)→ HomC(x, z),

idl : EqHomC(id ◦ f , f ),

idr : EqHomC(id ◦ f , f ),

assoc : EqHomC( f ◦ (g ◦ h), f ◦ (g ◦ h)),

refl : ∀ f → EqHomC( f , f ),

(p, q : EqHomC( f , g))→ (p = q),

EqHomC( f , g)→ ( f = g). ⌟

This presents categories as the algebras of a generalized algebraic theory. Together, the last rules imply
that EqHomC( f , g) is a proposition equivalent to the equality ( f = g). We could omit the sort EqHom without
changing the definition of category, but that would give a “wrong” generalized algebraic theory of categories,
i.e. one that would not be compatible with the homotopy theory of categories. The inclusion of EqHom
corresponds to the inclusion of {•⇒ •} → {• → •} as a generating cofibration in Cat. It can also be seen
as a truncated notion of 2-cell. Many definitions need to include conditions for all three sorts, e.g. weak
equivalences of categories are functors that are essentially surjective on objects, on morphisms (full) and on
morphism equalities (faithful).

We will write x ∈ C instead of x : ObC and f ∈ C(x, y) instead of f : HomC(x, y).
If C is a category, we write

IsoC ≜ ( f : HomC(x, y))× ( f−1 : HomC(y, x))

× ( f η : EqHomC( f ◦ f−1, id))× ( f ε : EqHomC( f−1 ◦ f , id)).

for the set of isomorphisms between objects x and y.
We now recall the main components of the (algebraic) homotopy theory of categories.

Definition 3.2. A functor F : C → D between categories is a split weak equivalence if the following lifting
conditions are satisfied:

• For every x ∈ D, there is some x0 ∈ X and some p : IsoD(F(x0), x).
• For every f ∈ D(F(x), F(y)), there is some f0 ∈ C(x, y) and some p : EqHomD(F( f0), f ).
• For every p : EqHomD(F( f ), F(g)), there is some p0 : EqHomC( f , g).

In other words, the split weak equivalences are the functors that are split essentially surjective, full and
faithful. ⌟

Proposition 3.3. Split weak equivalences satisfy 2-out-of-3 and are closed under retracts. □
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Definition 3.4. A functor F : C → D between categories is a split trivial fibration if its actions on objects,
morphisms, and morphism equalities are all split surjections:

• For every x ∈ D, there is x0 ∈ C such that F(x0) = x.
• For every f ∈ D(F(x), F(y)), there is f0 ∈ C(x, y) such that F( f0) = f .
• For every p : EqHomD(F( f ), F(g)), there is some p0 : EqHomC( f , g) such that F(p0) = p.

A functor I : A→ B is an algebraic cofibration if it is equipped with left liftings against all split trivial
fibrations. ⌟

Definition 3.5. A functor F : C → D between categories is a split fibration if it satisfies the following lifting
condition:

• For every x ∈ C and isomorphism f : IsoD(F(x), y), there is an isomorphism f0 : IsoC(x, y0) such that
F(y0) = y and F( f0) = f .

A functor I : A→ B is an algebraic trivial cofibration if it is equipped with left liftings against all split
fibrations. ⌟

Construction 3.6. For any category C, we construct a category PathC , called the path-category of C, along
with projection functors π1, π2 : PathC → C such that π1 and π2 are split trivial fibrations and ⟨π1, π2⟩ :
PathC → C × C is a split fibration.

• An object of PathC is a triple (x1, x2, xe) where xe : IsoC(x1, x2) is an isomorphism in C.
• A morphism from (x1, x2, xe) to (y1, y2, ye) is a pair ( f1, f2) where f1 : x1 → y1, f2 : x2 → y2 such

that ye ◦ f1 = f2 ◦ xe. ⌟

The loop-category LoopC of a category C is the pullback

LoopC PathC

C C × C

⌟
π ⟨π1,π2⟩
⟨id,id⟩

Construction 3.7. We construct a category ReflLoopC , called the reflexive-loop-category of C, as a displayed
category ReflLoopC → LoopC , such that πe : ReflLoopC → LoopC is a split fibration and the composition
π : ReflLoopC → LoopC → C is a split trivial fibration.

• An object of ReflLoopC displayed over xe : IsoC(x, x) is a proof that xe = id.
• There is a unique displayed morphism over every morphism of LoopC . ⌟

Remark 3.8. The diagram

ReflLoopC PathC Cπe
π1

π2

is a pre-reflexive graph object in Cat.
The projection π : ReflLoopC → C is actually an isomorphism. In other words, we actually have a reflexive

graph object in Cat. We don’t rely on this fact, as it won’t hold for models of HoTT. ⌟

Proposition 3.9. The constructions of PathC and ReflLoopC (and their projection maps) are functorial in C.

Proof. This follows from the fact that all components of PathC and ReflLoopC are expressed in the language
of categories (e.g. as finite limits of components of C). □

Proposition 3.10. Let F : C → D be a functor. If π : ReflLoopC → C admits a section r and F is an algebraic trivial
cofibration, then F is a split weak equivalence.

Proof. Write PathD[F× id] for the pullback of PathD over F× id : C ×D → D×D.
Observe that there is a composite map

r′ : C r−→ ReflLoopC
πe−→ PathC → PathD[F× id]

such that π1 ◦ r′ = id and π2 ◦ r′ = F.
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Since π1 : PathD[F× id]→ C is a pullback of π1 : PathD → D, it is a split trivial fibration. By 2-out-of-3,
the map r′ is a split weak equivalence.

The map π2, as the composition of split fibrations PathD[F × id] → C ×D and C ×D → D, is a split
fibration. Since F = π2 ◦ r′ has the left lifting property against π2, the retract argument says that the map F
is a retract of r′.

Since split weak equivalences are closed under retracts, F is a split weak equivalence. □

3.2. Saturation. We now work internally to cSet.
We say that a category C has fibrant components if ObC , HomC and EqHomC are fibrant. Note that the set

of isomorphisms IsoC(x, y) is fibrant when C has fibrant components.

Definition 3.11. A category C with fibrant components is saturated if:

• For every x ∈ C, the set (y ∈ C)× IsoC(x, y) is contractible.
• For every f ∈ C(x, y), the set (g ∈ C(x, y))× EqHomC( f , g) is contractible.
• For every p : EqHomC( f , g), the set EqHomC( f , g) is contractible.

The first condition says that C is univalent (Ahrens, Kapulkin, and Shulman 2015). The second and third
condition always hold due to the isomorphism EqHomC( f , g) ∼= ( f = g), but they morally say that HomC is
a family of h-sets and that EqHomC(−) is a family of h-propositions. ⌟

Definition 3.12. A strict Rezk completion of a global category C with fibrant components is a global saturated
category C along with a global functor i : C → C such that the external functor 1∗□(i) : 1∗□(C)→ 1∗□(C) is a
weak equivalence. ⌟

3.3. Construction of the strict Rezk completion. We still work internally to cSet.
We now give the candidate definition of the strict Rezk completion. The strict Rezk completion C of a

category C should be defined as the free extension of C by some additional structure. The first candidate
would be to add saturation as defined in definition 3.11, but this is poorly behaved in the absence of fibrancy.
We could add both saturation and fibrant replacement, but proving that the externalization of the inclusion
i : C → C is a weak equivalence becomes very hard.

Instead, following theorem 2.8, we redefine saturation by using trivial fibrancy instead of contractibility.

Definition 3.13. A Cof-fibrancy structure on a category C consists of:

• For every x ∈ C, an extension structure extOb(x) on (y ∈ C)× IsoC(x, y).
• For every f ∈ C(x, y), an extension structure extHom( f ) on (g ∈ C(x, y))× EqHomC( f , g).
• For every p : EqHomC( f , g), an extension structure extEqHom(p) on EqHomC( f , g). ⌟

Remark 3.14. Viewing this structure as a kind of fibrancy structure was suggested to the author by Christian
Sattler. In general, a functor F : C → D is a Cof-fibration if for every lifting problem (against a generating
trivial cofibration), the set of diagonal fillers is trivially fibrant. More generally, we can parametrize these
definitions by a notion of cofibration (a monomorphism Cof ↪→ Ω). In the special case when Cof =
{true, false}, having an extension structure is the same as having an element, and we recover the notion of
split fibration from definition 3.5.

We also note that a category C has fibrant components if for every lifting problem against a generating
cofibration, the set of diagonal fillers is fibrant. ⌟
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Remark 3.15. Equivalently, a Cof-fibrancy structure over a category C consists of the following operations:

GlueOb : (x ∈ C)(α : Cof)(y : [α]→ ObC)(e : [α]→ IsoC(x, y))

→ {ObC | α ↪→ y},
glueOb : (x ∈ C)(α : Cof)(y : [α]→ ObC)(e : [α]→ IsoC(x, y))

→ {IsoC(x,GlueOb(x, y, e)) | α ↪→ e},
GlueHom : ( f ∈ C(x, y))(α : Cof)(g : [α]→ HomC(x, y))(p : [α]→ EqHomC( f , g))

→ {HomC(x, y) | α ↪→ g},
glueHom : ( f ∈ C(x, y))(α : Cof)(g : [α]→ HomC(x, y))(p : [α]→ EqHomC( f , g))

→ {EqHomC( f ,GlueHom( f , g, p)) | α ↪→ p},
GlueEqHom : (p : EqHomC( f , g))(α : Cof)(q : [α]→ EqHomC( f , g))

→ {EqHomC( f , g) | α ↪→ q},

with ⟨GlueOb, glueOb⟩ = extOb, ⟨GlueHom, glueHom⟩ = extHom and GlueEqHom = extEqHom. ⌟

For the theory of categories, only the component extOb actually matters, as shown in the following
proposition:

Proposition 3.16. Any category can uniquely be equipped with extHom and extEqHom.

Proof. We can pose

GlueHom( f , g, p) ≜ f ,

glueHom( f , g, p) ≜ refl,

GlueEqHom(p, q) ≜ p.

The correct alignment under the cofibration α follows from the equality p in the case of GlueHom, and from
equalities between morphisms being propositional in the cases of glueHom and GlueEqHom.

The uniqueness follows from glueHom in the case of GlueHom and from equalities between morphisms
being propositional in the cases of glueHom and GlueEqHom. □

Proposition 3.17. If a category with fibrant components has a Cof-fibrancy structure, then it is saturated.

Proof. By proposition 2.6. □

The strict Rezk completion of a category C will be the Cof-fibrant replacement C of C. We will need to
prove that the components of C are fibrant. For this purpose, we will use lemma 2.7. The pre-reflexive graphs
will arise from the components of the pre-reflexive graph object

ReflLoopC PathC C,
πe

π1

π2

but we also have to check the existence of weak coercion operations and the homotopicality condition.
We now specify notions of weak coercion structures over lines of objects and morphisms in a category C.

Definition 3.18. Let x : I→ ObC be a line of objects of a category C. A weak coercion structure on x consists
of a family

wcoer→s
x : IsoC(x(r), x(s))

of isomorphisms along with a family

wcohr
x : EqHomC(wcoe

r→r
x , idx(r))

of equalities between morphisms. ⌟
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Definition 3.19. Let f : (i : I)→ HomC(x(i), y(i)) be a line of morphisms of a category C.
Given weak coercion structures for x and y, a weak coercion structure on f consists of a family

wcoer→s
f : EqHomC(wcoe

r→s
y ◦ f (r), f (s) ◦ wcoer→s

x )

of morphism equalities. ⌟

Construction 3.20. Given any category C, we define a displayed category HasWCoeC over CI.
• A displayed object over x : I→ ObC is a weak coercion structure wcoex over x.
• A displayed morphism over f : (i : I)→ HomC(x(i), y(i)) is a weak coercion structure wcoe f over f .
• We now define the displayed identity. Take a line x : I → ObC equipped with a weak coercion

structure. We equip idx(−) : (i : I)→ HomC(x(i), x(i)) with a weak coercion structure:

wcoer→s
idx(−)

: EqHomC(wcoe
r→s
x ◦ id, id ◦ wcoer→s

x ),

wcoer→s
idx(−)

≜ refl.

• We then define the displayed composition. Take lines f : (i : I) → HomC(y(i), z(i)) and g : (i :
I)→ HomC(x(i), y(i)) equipped with weak coercion structures. We equip ( f (−) ◦ g(−)) : (i : I)→
HomC(x(i), z(i)) with a weak coercion structure:

wcoer→s
f (−)◦g(−) : EqHomC(wcoe

r→s
z ◦ f (r) ◦ g(r), f (s) ◦ g(s) ◦ wcoer→s

x ).

This equality follows from

wcoer→s
f : EqHomC(wcoe

r→s
z ◦ f (r), f (s) ◦ wcoer→s

y )

and
wcoer→s

g : EqHomC(wcoe
r→s
y ◦ g(r), g(s) ◦ wcoer→s

x ).

• The interpretations of idl, idr and assoc are trivial, any two weak coercion structures over a same
morphism are equal. ⌟

Remark 3.21. The definition of HasWCoeC can also be derived from the definitions of Path− and ReflLoop−.
For any r, s : I, we can consider the pullback

PathC [⟨−r,−s⟩] PathC

CI C × C

⌟

⟨−r ,−s⟩

For any r : I, we can then consider the pullback

ReflLoopC [⟨−r⟩] ReflLoopC

PathC [⟨−r,−r⟩] CI C

⌟

⟨−r⟩

Now consider the diagram shape consisting of objects base, path(r, s) for r, s : I and refl-loop(r) for r : I,
such that base is terminal and with morphisms refl-loop(r)→ path(r, r) for r : I. Unfolding the constructions
shows that HasWCoeC is the limit of the diagram

base 7→ CI,

path(r, s) 7→ PathC [⟨−r,−s⟩],
refl-loop(r) 7→ ReflLoopC [⟨−r⟩],

with the evident restriction maps.
In particular, in any situation in which we have path-objects and reflexive-loop-objects, we can use this

limit as a definition of HasWCoe, and obtain in particular a notion of weak coercion structures. ⌟
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Proposition 3.22. The construction of HasWCoeC is functorial in C.

Proof. This follows from the functoriality of Path− and ReflLoop−. □

Lemma 3.23. If a category C has fibrant components, then for any algebraically cofibrant category A, the set Cat(A, C)
of functors from A to C is fibrant.

Proof. By lemma 2.1, it suffices to construct an element of HasWCom(λi 7→ Cat(A(i), C(i))) given a line A of
algebraically cofibrant categories and C of categories with fibrant components.

Take t : [α]→ (s : I)→ Cat(A(s), C(s)) and b : Cat(A(r), C(r)) such that [α]→ t(r) = b.
Define D(s) and E(s) as the limits of

C(s)[α]∧(r=s) (C(s)I)
(r=s)

C(s)

and

C(s)[α] C(s)[α]∧(r=s) C(s)(r=s).

As in lemma 2.4, we have a functor p : D(s)→ E(s). Since limits and computed sortwise in categories, the
actions of p on objects, morphisms and morphism equalities are given by the map of lemma 2.4. Thus, since
C(s) has fibrant components, lemma 2.4 implies that the actions of p on each sort are split surjections, i.e.
that the map p : D(s)→ E(s) is a split trivial fibration.

Now we have a map ⟨t, b⟩ : A(s)→ E(s). Since A(s) is algebraically cofibrant, this map factors through p.
This factor can be decomposed into wcomr→s

Cat(A(−),C(−))(t, b) and wcomr
Cat(A(−),C(−))(t, b), as needed. □

Proposition 3.24. If a category C has fibrant components, then the projection HasWCoeC → CI is a split trivial
fibration.

Proof. Note that this amounts to checking the following conditions:
• For every line x : I→ ObC , there is a weak coercion structure over x.
• For every line f : (i : I)→ HomC(x(i), y(i)), and given weak coercion structures over x and y, there

is a weak coercion structure over f .
• There is also a condition for equalities between morphisms, but it is trivial since morphism equalities

are trivial in HasWCoeC .
We prove it more abstractly using the definition of HasWCoe as a limit. Let I : A→ B be a (generating)

trivial cofibration and take a lifting problem

A HasWCoeC

B CI .

F

I

G

We construct a diagonal lift B → HasWCoeC using the universal property of HasWCoeC as a limit. This
means that we have to construct diagonal lifts Kr,s : B → PathC [⟨−r,−s⟩] for any r, s : I and Lr : B →
ReflLoopC [⟨−r⟩] for any r : I such that πe ◦ Lr = Kr,r. Since C has fibrant components, PathC [⟨−r,−s⟩] also
has fibrant components. Thus, by lemma 3.23, it suffices to define Kr,s under the diagonal cofibration (r = s).
Since π : ReflLoopC → C is a split trivial fibration, so is its pullback π : ReflLoopC [⟨−r⟩]→ CI. This provides
the lifts Lr, and we can pose Kr,r = πe ◦ Lr. □

Now assume that C be a global algebraically cofibrant category with fibrant components.

Construction 3.25. We write C for the Cof-fibrant replacement of C, i.e. the category freely generated by a
functor i : C → C and a Cof-fibrancy structure. ⌟

We will have to prove two things: the fibrancy of the components of C, and the fact that 1∗□(i) : 1∗□(C)→
1∗□(C) is an external split weak equivalence of categories.

Lemma 3.26. The map iI : CI → CI exhibits CI as a Cof-fibrant replacement of CI.
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Proof. This is an instance of lemma 2.2, applied to the inclusion from the theory of categories into the theory
of Cof-fibrant categories. □

Proposition 3.27. The displayed category HasWCoeC can be equipped with a displayed Cof-fibrancy structure.

Proof. We interpret the operations of a Cof-fibrancy structure. By proposition 3.16, we only have to interpret
extOb.

Interpretation of extOb: Take a cofibration α and lines x : I → C, y : (i : I) → [α] → ObC and
e : (i : I) → [α] → IsoC(x(i), y(i)). We need to define displayed object (weak coercion structures)
over the lines G(−) = GlueOb(x(−), y(−), e(−)) (of objects) and g(−) = glueOb(x(−), y(−), e(−))
(of isomorphisms). A weak coercion structure for the isomorphism g consists of weak coercion
structures for both morphisms g and g−1. The coercion structures should also coincide with wcoey
and wcoee under the cofibration α.

We pose

wcoer→s
G : IsoC(G(r), G(s)),

wcoer→s
G ≜ g(s) ◦ wcoer→s

x ◦ g(r)−1,

wcohr
G : EqHomC(wcoe

r→r
G , id),

wcoer→s
g : EqHomC(wcoe

r→s
G ◦ g(r), g(s) ◦ wcoer→s

x ),

wcoer→s
g−1 : EqHomC(wcoe

r→s
x ◦ g(r)−1, g(s)−1 ◦ wcoer→s

G ).

The equality wcohr
G follows from wcohr

x, which says that wcoer→r
x = idx. The equalities wcoer→s

g and
wcoer→s

g−1 follow from the definition of wcoer→s
G and the categorical laws.

We then have to check that under α, these restrict to wcoey, wcohy, wcoee and wcoee−1 . We already
know that G and g restrict to y and e. Only the case of wcoey is non-trivial: it follows from the equality
wcoee between wcoer→s

y ◦ e(r) and e(s) ◦ wcoer→s
x . □

Proposition 3.28. The displayed category HasWCoeC → CI admits a global section.

Proof. By proposition 3.24, HasWCoeC → CI is a split trivial fibration. Since C is algebraically cofibrant, it
admits a section. By composing this section with HasWCoeC → HasWCoeC , we obtain a map CI → HasWCoeC

displayed over iI : CI → CI.
By combining this with proposition 3.27, we can use the universal property of CI from lemma 3.26 to

obtain a section of HasWCoeC → CI. □

Proposition 3.29. The category C has fibrant components.

Proof. We need to define weak composition structures for the objects, morphisms and morphism equalities
of C.

Weak composition for ObC : We use lemma 2.7 for A = ⊤ and B = λ_→ ObC . The families EB and RB
are given by the corresponding components of PathC and ReflLoopC , namely

EB(x, y) = IsoC(x, y),

RB(x, f ) = EqHomC( f , id).

By proposition 3.28, we have the required operations wcoe and wcoh.
It remains to check homotopicality, i.e. to construct extension structures

∀x → HasExt((y : ObC)× IsoC(x, y)),

∀x → HasExt(( f : IsoC(x, x))× EqHomC( f , id)).

They both arise from C being Cof-fibrant.
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Weak composition for HomC : We use lemma 2.7 for A = ObC × ObC and B(x, y) = HomC(x, y). The
families EA, RA, EB and RB are given by the corresponding (limits of) components of PathC and
ReflLoopC , e.g. EA((x1, y1), (x2, y2)) = IsoC(x1, x2)× IsoC(y1, y2). By proposition 3.28, we have the
required operations wcoe and wcoh.

It remains to construct extension structures

∀(xe : IsoC(x1, x2))(ye : IsoC(y1, y2))( f1 ∈ HomC(x1, y1))

→ HasExt(( f2 : HomC(x2, y2))× EqHomC( f2 ◦ xe, ye ◦ f1)),

∀(xe : IsoC(x, x))(xr : EqHomC(xe, id))(ye : IsoC(x, x))(yr : EqHomC(ye, id))

( f ∈ HomC(x, y))

→ HasExt(( f : IsoC(x, x))× EqHomC( f , id)).

The set ( f2 : HomC(x2, y2)) × EqHomC( f2 ◦ xe, ye ◦ f1) has a unique element (ye ◦ f1 ◦ x−1
e , refl).

The set ( f : IsoC(x, x))× EqHomC( f , id) has a unique element (id, refl). This provides the needed
extension structures.

Weak composition for EqHomC : We could proceed as above, but this follows more directly from propo-
sition 2.6, since EqHomC( f , g) is trivially fibrant. □

Remark 3.30. In the proof of proposition 3.29 we had to prove the trivial fibrancy of some sets. An alternative
would be to add these as additional extension structures in the definition of Cof-fibrancy structure. This
would simplify the proof of proposition 3.29, at the price of additional cases in the proof of proposition 3.27.

⌟

We have now proven that C has fibrant components. It remains to prove that 1∗□(i) : 1∗□(C)→ 1∗□(C) is an
external split weak equivalence.

Lemma 3.31. The external category 1∗□(C) has the universal property of the fibrant replacement of 1∗□(C).

Proof. This almost follows from the fact that the left adjoint 1∗□ preserves colimits, except for the fact that the
definition of C depends on the internal notion of cofibration. This can be seen as a crisp induction principle
for C, and could alternatively be proven in the spatial type theory of Shulman (2018).

A fibrancy structure on a category X is an operation

extOb : (x ∈ X )→ (y ∈ X )× ( f : IsoX (x, y)).

(Operations extHom and extEqHom would be trivial for the same reasons as proposition 3.16.)
Write Catfib for the category of categories with a fibrancy structure, and CatCof-fib for the category of

categories with a Cof-fibrancy structure. There is a functor CatCof-fib → Catfib, obtained by specializing the
Cof-fibrancy structure to the cofibration ⊥.

Let X be a category under 1∗□(C) with a fibrancy structure. We need to prove that (1∗□(C)/Catfib)(1∗□(C), X )
has a unique element.

The adjunction ((1∗□) ⊣ (1□)∗) induces an adjunction between the categories Catg
fib of global fibrant 1-

categories and Catfib of fibrant 1-categories. It extends to an adjunction between the coslices (1∗□(C)/Catg
fib)

and (C/Catfib). Thus we have a category X ′ in (1∗□(C)/Catfib) and an isomorphism

(1∗□(C)/Catg
fib)(1

∗
□(C), X ) ∼= (C/Catfib)(C, X ′).

We show that there is a unique Cof-fibrancy structure on X ′ extending its fibrancy structure. The
component for α : Cof consists of a map

(x : (1□)∗(X))(y : [α]→ (1□)∗(Y(x)))→ (1□)∗({Y(x) | α ↪→ y})
for some sets X and Y. By properties of the right adjoint (1□)∗, we can assume that α, x and y are global
elements. In particular, the cofibration α is either ⊤ or ⊥, since global cofibrations are decidable. When
α = ⊤, the component of the fibrancy structure is uniquely determined. Thus, a Cof-fibrancy structure on X ′
is uniquely determined by its component for α = ⊥. In other words, X ′ has a unique Cof-fibrancy structure
extending its fibrancy structure.
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This induces an isomorphism

(C/Catfib)(C, X ′) ∼= (C/CatCof-fib)(C, X ′).

By the universal property of C, this set has a unique element, as needed. □

Proposition 3.32. The functor 1∗□(i) : 1∗□(C)→ 1∗□(C) is a split weak equivalence.

Proof. We first show that π : ReflLoop1∗□(C) → 1∗□(C) admits a section. Since C is algebraically cofibrant and
πe : ReflLoopC → C is a split trivial fibration, we have a section r of π : ReflLoopC → C, hence a section
1∗□(r) of 1∗□(π) : 1∗□(ReflLoopC)→ 1∗□(C). Since 1∗□ preserves finite limits and the components of ReflLoopC
are finite limits of components of C, we have 1∗□(ReflLoopC) = ReflLoop1∗□(C). Thus, 1∗□(r) is a section of
π : ReflLoop1∗□(C) → 1∗□(C).

By lemma 3.31, we know that 1∗□(i) : 1∗□(C)→ 1∗□(C) is an algebraic trivial cofibration.
We have verified the conditions of proposition 3.10. Therefore, 1∗□(i) : 1∗□(C) → 1∗□(C) is a split weak

equivalence. □

Theorem 3.33. Any global cofibrant category with fibrant components admits a strict Rezk completion.

Proof. We use the category C defined in construction 3.25. By proposition 3.29 it has fibrant components.
By proposition 3.17 it is saturated. By proposition 3.32 the functor i : C → C is a split weak equivalence. □

4. SEMANTICS OF HOTT

In this section we describe the semantics of HoTT, i.e. we describe its category of models and some model
constructions.

We choose a variant of HoTT in which every type belongs to some universe. The types are stratified by
a hierarchy of ω universes (Un)n<ω, and types at level n are in bijective correspondence with terms of Un.
Using this variant, it suffices to consider terms in many constructions, instead of dealing with terms and
types separately.

4.1. Families. We first describe HoTT as a second-order theory, i.e. using higher-order abstract syntax.

Definition 4.1. A cumulative family consists of the following components, where n ranges over natural
numbers:

Tyn : Set,
Tmn : Tyn → Set,
Liftn : Tyn → Tyn+1,

lift : Tmn(A) ∼= Tmn+1(Liftn(A)),
Un : Tyn+1,

El : Tm(Un) ∼= Tyn. ⌟

If M is a cumulative family, we may write Mn instead of M.Tyn. We also omit Tm(−) when possible. For
instance, given a type A : Mn, the set of dependent type may be written A→Mn instead of M.Tm(A)→
M.Tyn. We similarly omit Lift(−), lift(−) and El(−) when unambiguous.

Definition 4.2. A MLTT-family is a cumulative family equipped with the structures of Π-types with function
extensionality, Σ-types, 1-types, Id-types, boolean types, empty types and W-types. ⌟

The following definitions of contractible types and equivalences are used to specify univalent universes.

isContr(A) ≜ (x : A)× ((y : A)→ IdA(x, y)),

isEquiv( f ) ≜ (b : B)→ isContr((a : A)× IdB( f (a), b)),

Equiv(A, B) ≜ ( f : A→ B)× isEquiv( f ).
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Definition 4.3. A univalence structure on a MLTT-family consists of operations

uan : (A : Un)→ isContr((B : Un)× Equiv(A, B)). ⌟

Definition 4.4. A HoTT-family is a MLTT-family equipped with a univalence structure. ⌟

Because they do not have any equations.

Definition 4.5. A MLTT-family has coequalizers if for every A, B : Un, f , g : B → A, we have a type
Coeq( f , g) : Un with constructors

i : A→ Coeq( f , g),

p : (b : B)→ IdCoeq( f ,g)(i( f (b)), i(g(b))).

and for every P : Coeq( f , g)→ Um, i′ : (a : A)→ P(i(a)) and p′ : (b : B)→ DId
p(b)
P (i( f (b)), i(g(b)), we have

elim : (x : Coeq( f , g))→ P(x),

elimi : (a : A)→ Id(elim(i(a)), i′(a)),

elimp : (b : B)→ Id(ap(elim, p(b)), elim−1
i · p

′(b) · elimi). ⌟

4.2. Models. Our notion of models is based on categories with families (Dybjer 1995; Castellan, Clairambault,
and Dybjer 2021).

Definition 4.6. A model of HoTT is a category M, with a terminal object 1M, together with a global HoTT-
family (M.Ty, M.Tm, . . . ) in Psh(M), such that for every n < ω, the dependent presheaf M.Tmn is locally
representable. ⌟

If M is a model, we will write a :: X to indicate that A is a global element of a global type X of the
presheaf model Psh(M). In particular, we may write A :: M.Tyn (or A :: Un) to indicate that A is a closed
type, or A :: y(Γ)→M.Tyn to indicate that A is a type over Γ ∈M.

We will sometimes need to restrict to democratic models.

Definition 4.7. A model M is democratic if for every object Γ ∈ M, there is a closed type K(Γ) and an
isomorphism 1.K(Γ) ∼= Γ. ⌟

Given a democratic model, we will identify contexts with closed types and omit the operation K(−) and
the isomorphism 1.K(Γ) ∼= Γ.

The category of models of HoTT can be equipped with classes of weak equivalences, fibrations, trivial
fibrations, etc. These correspond to the classes of maps introduced by Kapulkin and Lumsdaine (2018).
These classes of maps are local, in the sense that their lifting conditions only involve types and terms, not
objects and morphisms. As a consequence, they are only well-behaved when restricted to democratic models.
Because types are in bijective correspondence with terms of universes, we can omit any lifting condition
involving types from our definitions. Only lifting conditions for terms are needed.

Definition 4.8. A morphism F : M → N between models of HoTT is a split weak equivalence if the
following weak lifting condition is satisfied:

Weak term lifting: For every type A : M.Ty(Γ) and term a : N .Tm(F(Γ), F(A)), there is a term
a0 : M.Tm(Γ, A) and an identification p : N .Tm(F(Γ), IdF(A)(F(a0), a)). ⌟

Definition 4.9. A morphism F : M→ N between models of HoTT is a split trivial fibration if the following
lifting condition is satisfied:

Term lifting: For every type A : M.Ty(Γ) and term a : N .Tm(F(Γ), F(A)), there is a term a0 :
M.Tm(Γ, A) such that F(a0) = a.

A morphism I : A→ B is an algebraic cofibration if it is equipped with lifting structures against all split
trivial fibrations. ⌟

Definition 4.10. A morphism F : M→ N between models of HoTT is a split fibration if the following lifting
condition is satisfied:
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Identification lifting: For every term a : M.Tm(Γ, A) and identification p : N .Tm(F(Γ), IdF(A)(F(x), y)),
there is a term y0 : M.Tm(Γ, A) and an identification p0 : M.Tm(Γ, IdA(x, y0)) such that F(y0) = y
and F(p0) = p.

A morphism I : A→ B is an algebraic trivial cofibration if it is equipped with lifting structures against
all split fibrations. ⌟

Proposition 4.11. Split weak equivalences between democratic models satisfy the 2-out-of-3 property.

Proof. Let F : C → D and G : D → E be two composable morphisms between democratic models.
1: Assume that both F and G are weak equivalences. Take a term a : E .Tm(G(F(Γ)), G(F(A)). Since

G is a weak equivalence, there is a0 : D.Tm(F(Γ), F(A)) and p0 : E .Tm(G(F(Γ)), Id(G(a0), a)).
Since F is a weak equivalence, there is a1 : C.Tm(Γ, A) and p1 : D.Tm(F(Γ), Id(F(a1), a0)). Then
(G(p1) · p0) : E .Tm(G(F(Γ)), Id(G(F(a1)), a)) witnesses the fact that a1 is a weak lift of a. Thus
(G ◦ F) is a weak equivalence.

2: Assume that both G and (G ◦ F) are weak equivalences. Take a term a : D.Tm(F(Γ), F(A)). Since
(G ◦ F) is a weak equivalence, there is a0 : C.Tm(Γ, A) and p0 : E .Tm(G(F(Γ)), Id(G(F(a0)), G(a))).
Since G is a weak equivalence, there is p1 : D.Tm(F(Γ), Id(F(a0), a), exhibiting a0 as a weak lift of a.
Thus F is a weak equivalence.

3: Assume that both F and (G ◦ F) are weak equivalences. Take a term a : E .Tm(G(Γ), G(A)). Since
F is a weak equivalence and D is democratic, there is Γ0 ∈ C and A0 : C.Ty(Γ0), an equivalence α
between F(Γ0) and Γ and a dependent equivalence β between F(A0) and A lying over α. We can
transport a over G(α) and G(β) to obtain a term a0 : E .Tm(G(F(Γ0)), G(F(A0)). Since (G ◦ F) is a
weak equivalence, there is a lift a1 : C.Tm(Γ0, A0) and p1 : E .Tm(G(F(Γ0)), Id(G(F(a1)), a0)). Now
define a2 : D.Tm(Γ, A) by transporting a1 over α and β. The transports cancel out in G(a2), and we
obtain an identification p2 : E .Tm(G(Γ0), Id(G(a2), a)), exhibiting a2 as a weak lift of a. Thus G is a
weak equivalence. □

Proposition 4.12. Split weak equivalences are closed under retracts.

Proof. Take a retract diagram

A B A

C D C,

S1

G F

R1

G
S2 R2

and assume that F : B → D is a split weak equivalence.
Take a term a : C.Tm(G(Γ), G(A)). Since F is a weak equivalence, there is a0 : B.Tm(S1(Γ), S1(A))

and an identification p0 : D.Tm(S2(G(Γ)), Id(F(a0), S2(a))). Then R1(a0) : A.Tm(Γ, A) and R2(p0) :
C.Tm(G(Γ), Id(G(R1(a0)), a)) is an identification witnessing the fact that R1(a0) is a weak lift of a. Thus G is
a weak equivalence. □

4.3. Displayed families. We now describe displayed HoTT-families, which should be thought as the
motives and methods of the induction principle that we will use to prove homotopy canonicity. Displayed
HoTT-families correspond to the notion of displayed higher-order model from Bocquet, Kaposi, and Sattler
(2023).

Definition 4.13. A displayed cumulative family M• over a model M consists of the following components:

Ty•n : M.Tyn(1M)→ Set,

Tm•n : Ty•n(A)→M.Tmn(1M, A)→ Set,

Lift•n : Ty•n(A)→ Ty•n+1(Liftn(A)),

lift• : Tm•n(A•, a) ∼= Ty•i+1(Lift
•
n(A•), lift(a)),

U•n : Ty•n+1(Un),

El• : Tm•(U•n , A) ∼= Ty•n(El(A)).
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A displayed MLTT-family is a displayed cumulative family together with displayed Π-types with
function extensionality, Σ-types, 1-types, Id-types, boolean types, empty types and W-types. ⌟

We can compute the following definitions of displayed contractibility witnesses and equivalences.

isContr•(A•, c) = (x• : A•(fst(c)))× (∀y (y• : A•(y))→ Id•(A•, x•, y•, app(snd(c), y))),

isEquiv•( f •, e)

= (∀b b• → isContr•(λ(a, p) 7→ (a• : A•(a))× (p• : Id•(B•, f •(a•), b•, p)), app(e, b))),

Equiv•(A•, B•, f ) = ( f • : ∀a→ A•(a)→ B•(app(fst( f ), a)))× isEquiv•( f •, snd( f )).

Definition 4.14. A displayed HoTT-family is a displayed MLTT-family together with a displayed univalence
structure:

ua• : ∀A, (A• : Ty•n(A))→ isContr•(λ(B, f ) 7→ (B• : Ty•n(B))× Equiv•(A•, B•, f ), ua(A)). ⌟

4.4. Sconing. We also recall the sconing operation, also called displayed contextualization, which turns
a displayed family into a displayed model. The purpose of this construction is to allow for the use of the
induction principle of the syntax of HoTT (any displayed model over the syntax admits a section). Strict
canonicity for MLTT can be proven using an instance of this construction; we refer the reader to Bocquet,
Kaposi, and Sattler (2023) for more details.

Construction 4.15. If M• is a displayed HoTT-family over M, we construct a model SconeM• displayed
over M.

• An object of SconeM• displayed over Γ ∈M is a family

Γ• : M(1M, Γ)→ Set.

• A morphism of SconeM• from Γ• to ∆• displayed over f ∈M(Γ, ∆) is a family

f • : ∀γ→ Γ•(γ)→ Γ•( f ◦ γ).

• A type of SconeM• over Γ• displayed over A : M.Tyn(Γ) is a family

A• : ∀γ→ Γ•(γ)→ Ty•(A[γ]).

• A term of SconeM• of type A• displayed over a : M.Tm(Γ, A) is a family

a• : ∀γ→ (γ• : Γ•(γ))→ Tm•(A•(γ•), a[γ]).

• The substitution actions on types and terms are defined by function composition:

A•[ f •] ≜ λγ• 7→ A•( f •(γ•)),

a•[ f •] ≜ λγ• 7→ a•( f •(γ•)).

• The displayed empty context ⋄• and extended contexts are given by singleton sets and dependent
sums:

⋄• ≜ λ_ 7→ {⋆},
(Γ•.A•) ≜ λ(γ, a) 7→ (γ• : Γ•(γ))× (a• : A•(γ•, a)).

• All type-theoretic structures are defined pointwise using the corresponding operation from M•.

SconeM• .1(Γ•) ≜ λγ• 7→ 1•,

SconeM• .Π(Γ•, A•, B•) ≜ λγ• 7→ Π•(A•(γ•), λa• 7→ B•(γ•, a•)),

SconeM• .lam(Γ•, b•) ≜ λγ• 7→ lam•(λa• 7→ B•(γ•, a•)),

SconeM• .ua(Γ•, A•) ≜ λγ• 7→ ua•(A•(γ•)),
. . .

• All naturality conditions follow simply from associativity of function composition. ⌟
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4.5. Relational equivalences. Let M be a HoTT-family. We define relational equivalences (also known as
one-to-one correspondences) and reflexivity structures, which will be used to define the path and reflexive-
loop models of HoTT. Relational equivalences are equivalent to other definitions of equivalences in HoTT
(e.g. half-adjoint equivalences). A self-equivalence has a reflexivity structure when it is homotopic to the
identity equivalence. The definition of these structures as families of types together with contractibility
conditions permits the definition of models corresponding to parametricity translations (the families of types
are then seen as logical relations).

Definition 4.16. Given types A1, A2 : Mn, a relational equivalence Ae : RelEquiv(A1, A2) consists of a
type-valued relation

Ae : A1 → A2 →Mn,

and families of contractibility proofs witnessing that Ae is functional in both directions

Ae.
−→
fun : (a1 : A1)→ isContr((a2 : A2)× Ae(a1, a2)),

Ae.
←−
fun : (a2 : A2)→ isContr((a1 : A1)× Ae(a1, a2)). ⌟

Definition 4.17. A reflexivity structure Ar : isRefl(Ae) over an equivalence Ae : RelEquiv(A, A) consists of a
family

Ar : (a : A)→ Ae(a, a)→Mn,

along with a family of contractibility proofs witnessing the unique existence of a reflexivity loop

Ar.refl : (a : A)→ isContr((ae : Ae(a, a))× Ar(a, ae)). ⌟

Construction 4.18. Given a relational equivalence Ae : RelEquiv(A1, A2) and elements xe : Ae(x1, x2) and
ye : Ae(y1, y2), there is a relational equivalence IdRelEquiv(Ae, xe, ye) : RelEquiv(IdA1(x1, y1), IdA2(x2, y2)),
defined by

IdRelEquiv(Ae, xe, ye) ≜ λrefl refl 7→ IdAe(x1,x2)
(xe, ye).

When Ae is a self-equivalence with a reflexivity structure Ar : isRefl(Ae) and we have elements xr :
Ar(x, xe) and yr : Ar(y, ye), there is a reflexivity structure IdisRefl(Ar, xr, yr) : isRefl(IdRelEquiv(Ae, xe, ye)),
defined by

IdisRefl(Ar, xr, yr) ≜ λrefl refl 7→ IdAr(x,xe)(xr, yr). ⌟

Construction 4.19. The universe Un has a reflexive relational equivalence, given by:

URelEquiv ≜ λA B→ RelEquiv(A, B),

U isRefl ≜ λA E→ isRefl(A, E).

The contractibility conditions follow from univalence. ⌟

Relational equivalences and reflexivity structures are also preserved by the other type formers (Σ-, Π-,
W-, boolean, empty and unit types). For details see the Agda formalization.

4.6. Path and reflexive loop models. We construct path and reflexive-loop models of HoTT. These are
instances of homotopical inverse diagram models (Kapulkin and Lumsdaine 2021), indexed respectively by
the homotopical inverse categories

E

V1 V2

π1 π2 and R E V.
pe

p1

p2

They are also closely related to the univalent parametricity translation of Tabareau, Tanter, and Sozeau
(2021).

We only define these models for a democratic base model, although variants of the constructions exists
for an arbitrary base model.
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Construction 4.20. For any democratic model M of HoTT, we construct another model PathM, called the
path-model of M. We define it as a displayed model over M×M.

• An object of PathM displayed over Γ1, Γ2 is an equivalence

Γe :: RelEquiv(Γ1, Γ2).

• A morphism of PathM from Γe to ∆e displayed over f1 :: Γ1 → ∆1 and f2 :: Γ2 → ∆2 is a function

fe :: Γe(γ1, γ2)→ ∆e( f1(γ1), f2(γ2)).

• A type of PathM over Γe and displayed over A1 :: Γ1 → Un and B1 :: Γ2 → Un is a family of
equivalences

Ae :: (γe : Γe(γ1, γ2))→ RelEquiv(A1(γ1), A2(γ2)).

• A term of PathM of type Ae and displayed over a1 :: (γ1 : Γ1)→ A1(γ1) and B1 :: (γ2 : Γ2)→ A2(γ2)
is a family

ae :: (γe : Γe(γ1, γ2))→ Ae(a1(γ1), a2(γ2)).

• The type formers are interpreted pointwise over γe : Γe(γ1, γ2) using the constructions of section 4.5.
For example,

PathM.IdAe(xe, ye) ≜ λγe 7→ IdRelEquiv(Ae(γe), xe(γe), ye(γe)).

• The rest of the structure corresponds to a standard binary parametricity construction. ⌟

The loop-model LoopM of a model M is the pullback

LoopM PathM

M M×M

⌟
π ⟨π1,π2⟩
⟨id,id⟩

Construction 4.21. For any democratic model M of HoTT, we construct another model ReflLoopM, called
the reflexive-loop-model of M. We define it as a displayed model over LoopM.

• An object of ReflLoopM displayed over Γ, Γe is a reflexivity structure

Γr :: isRefl(Γe).

• A morphism of ReflLoopM from Γr to ∆r and displayed over f , fe is a map

fr :: Γr(γ, γe)→ ∆r( f (γ), fe(γe)).

• A type of ReflLoopM displayed over A :: Γ→ Un and Ae :: ∀γ γe → RelEquiv(A(γ), A(γ)) is a family
of reflexivity structures

Ar :: (γr : Γr(γ, γe))→ isRefl(Ae(γe)).

• A term of ReflLoopM of type Ar displayed over a :: (γ : Γ)→ A(γ) and ae :: ∀γ γe → Ae(γe, a(γ), a(γ))
is a family of reflexivity structures

ar :: (γr : Γr(γ, γe))→ Ar(a(γ), ae(γe)).

• The type formers are interpreted using the constructions of section 4.5.
• The rest of the structure corresponds to a standard parametricity construction. ⌟

Proposition 4.22. The projection ⟨π1, π2⟩ : PathM →M×M is a split fibration.

Proof. We first prove that ⟨π1, π2⟩ : PathM →M×M satisfies the identification lifting property. Take a term
x of PathM. It consists of an equivalence Γe :: RelEquiv(Γ1, Γ2), a family Ae :: ∀γe → RelEquiv(A1(γ1), A2(γ2))
of equivalences and a family xe :: ∀γe → Ae(γe, x1(γ1), x2(γ2)). Take an identification p in M×M be-
tween ⟨π1, π2⟩(x) and a term y. It consists of p1 :: ∀γ1 → IdA1(γ1)

(x1(γ1), y1(γ1)) and p2 :: ∀γ2 →
IdA2(γ2)

(x2(γ2), y2(γ2)). We then define ye :: ∀γe → Ae(γe, y1(γ1), y2(γ2)) by transporting xe over p1 and
p2. We obtain pe :: ∀γe → IdRelEquiv(Ae, xe, ye)(p1(γ1), p2(γ2)) as a witness of the fact that ye is a transport
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of xe over p1 and p2. Then (ye, pe) is a lift of the identification (y, p) against ⟨π1, π2⟩. Thus ⟨π1, π2⟩ is a split
fibration. □

Proposition 4.23. The projections π1, π2 : PathM →M are split trivial fibrations.

Proof. We prove that π1 satisfies the term lifting property, the case of π2 is symmetric. Take a type A in PathM.
It consists of an equivalence Γe :: RelEquiv(Γ1, Γ2) and a family Ae :: ∀γe → RelEquiv(A1(γ1), A2(γ2)) of
equivalences. Take a term of type π1(A) in M, i.e. a term x1 :: ∀γ1 → A1(γ1). We then define a term
x2 :: ∀γ2 → A2(γ2) by transport over the equivalences Γe and Ae. We have an element xe :: ∀γe →
Ae(γe, x1(γ1), x2(γ2)) witnessing that x2 was defined by transporting x1. Then (x1, x2, xe) is a lift of the term
x1 along π1. Thus π1 is a split trivial fibration. □

Proposition 4.24. The projection πe : ReflLoopM → LoopM is a split fibration.

Proof. Similar to proposition 4.22. □

Proposition 4.25. The projection π : ReflLoopM →M is a split trivial fibration.

Proof. Similar to proposition 4.23. □

Proposition 4.26. The constructions of PathM and ReflLoopM are functorial in M.

Proof. This follows from the fact that all components of PathM and ReflLoopM are expressed in the “language
of HoTT”, e.g. as finite limits of components of M.

This can be stated more precisely using functorial semantics: the democratic models of HoTT are algebras
for an essentially algebraic theory T dem

HoTT(a finitely complete category). The model M is a left exact functor
M : T dem

HoTT → Set. We then observe that PathM = M ◦ P and ReflLoopM = M ◦ R for some left exact
functors P, R : T dem

HoTT → T dem
HoTT (which can be constructed using the universal property of T dem

HoTT). The
functoriality is then immediate. □

Proposition 4.27. Let F : M→ N be a morphism between democratic models of HoTT. If π : ReflLoopM →M
admits a section r and F is an algebraic trivial cofibration, then F is a split weak equivalence.

Proof. Same proof as proposition 3.10. □

5. STRICT REZK COMPLETIONS FOR MODELS OF HOTT

For most of this section, we work internally to cSet.
We say that a model M of HoTT has fibrant components if for every A : M.Tyn(Γ), the set M.Tm(Γ, A)

is fibrant. Note that as a special case, the sets M.Tyn(Γ) are fibrant, since M.Tyn(Γ) ∼= M.Tm(Γ, Un).

Definition 5.1. We say that a model M of HoTT with fibrant components is saturated when:
• For every term x : M.Tm(Γ, A), the fibrant set (y : M.Tm(Γ, A)) × (p : M.Tm(Γ, IdA(x, y))) is

contractible. ⌟

Definition 5.2. A strict Rezk completion of a global model M of HoTT with fibrant components is a global
saturated model M, along with a morphism i : M→M such that the external morphism 1∗□(i) : 1∗□(M)→
1∗□(M) is a split weak equivalence of models of HoTT. ⌟

Definition 5.3. A Cof-fibrancy structure over a model M consists of:
• For every term x : M.Tm(Γ, A), an extension structure extTm(x) : HasExt((y : M.Tm(Γ, A))× (p :

M.Tm(Γ, IdA(x, y))). ⌟

A Cof-fibrancy structure can be decomposed into operations

GlueTm : (Γ ∈M)(A : M.Ty(Γ))(x : M.Tm(Γ, A))(α : Cof)(y : [α]→M.Tm(Γ, A))

→ (p : [α]→M.Tm(Γ, IdA(x, y)))→ {M.Tm(Γ, A) | α ↪→ y},
glueTm : (Γ ∈M)(A : M.Ty(Γ))(x : M.Tm(Γ, A))(α : Cof)(y : [α]→M.Tm(Γ, A))

→ (p : [α]→M.Tm(Γ, IdA(x, y)))→ {M.Tm(Γ, IdA(x,GlueTm(x, y, p))) | α ↪→ p},
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with ⟨GlueTm, glueTm⟩ = extTm.

Lemma 5.4. If M is Cof-fibrant and a type A : M.Ty(Γ) is contractible, then M.Tm(Γ, A) is trivially fibrant.

Proof. Write c : M.Tm(Γ, A) for the center of contraction of A. Given any y : M.Tm(Γ, A), we have an
identification pA(y) : M.Tm(Γ, IdA(c, y)).

Take a partial element x0 : [α]→M.Tm(Γ, A). We then have a total element

x ≜ GlueTm(c, [α 7→ (x0, pA(x0))])

extending x0.
This equips M.Tm(Γ, A) with an extension structure, as needed. □

Proposition 5.5. If model M with fibrant components is Cof-fibrant, then it is saturated.

Proof. By proposition 2.6. □

Let M be a global democratic model of HoTT. Similarly to the case of categories, we want to prove that
the Cof-fibrant replacement M of M a strict Rezk completion. In order to use lemma 2.7, we need to show
that pre-reflexive graphs arising from the pre-reflexive graph object

ReflLoopM PathM Mπe
π1

π2

have weak coercion operations and are homotopical.

Definition 5.6. A weak coercion structure over a line Γ : I→ ObM consists of families

wcoer→s
Γ :: RelEquiv(Γ(r), Γ(s)),

wcohr
Γ :: isRefl(wcoer→r

Γ )

of equivalences and reflexivity structures.
Given weak coercion structures wcoeΓ and wcoe∆, a weak coercion structure over a line f : (i : I) →

M(Γ(i), ∆(i)) consists of families

wcoer→s
f :: wcoer→s

Γ (γ1, γ2)→ wcoer→s
∆ ( f (γ1), f (γ2)),

wcohr
f :: wcohr

Γ(γ, γe)→ wcohr
∆( f (γ),wcoer→r

f (γe)).

Given a weak coercion structure wcoeΓ, a weak coercion structure over a line f : (i : I) →M.Ty(Γ(i))
consists of families

wcoer→s
A :: wcoer→s

Γ (γ1, γ2)→ RelEquiv(A(r, γ1), A(s, γ2)),

wcohr
A :: wcohr

Γ(γ, γe)→ isRefl(wcoer→r
A (γe)).

Given weak coercion structures wcoeΓ and wcoeA, a weak coercion structure over a line a : (i : I) →
M.Tm(Γ(i), A(i)) consists of families

wcoer→s
a :: (γe : wcoer→s

Γ (γ1, γ2))→ wcoer→s
A (γe, a(r), a(s)),

wcohr
a :: (γr : wcohr

Γ(γ, γe))→ wcohr
A(γr,wcoer→r

a (γe)). ⌟

Construction 5.7. We construct a displayed model HasWCoeM over MI. As described in remark 3.21, we
construct it as the limit of the diagram

base 7→MI,

path(r, s) 7→ PathM[⟨−r,−s⟩],
refl-loop(r) 7→ ReflLoopM[⟨−r⟩],

over the diagram shape consisting of objects base, path(r, s) for r, s : I and refl-loop(r) for r : I, such that base
is terminal and with morphisms refl-loop(r)→ path(r, r) for r : I.

We can verify by unfolding the definition that the displayed objects, morphisms, types and terms of this
model are weak coercion structures over lines of objects, morphisms, types and terms of M. ⌟



STRICT REZK COMPLETIONS OF MODELS OF HOTT AND HOMOTOPY CANONICITY 24

Proposition 5.8. If a model M has fibrant components, then the projection HasWCoeM → MI is a split trivial
fibration.

Proof. Same proof as proposition 3.24. □

Now assume that M is a global algebraically cofibrant model of HoTT with fibrant components.

Lemma 5.9. Any algebraically cofibrant model is democratic; in particular, the model M is democratic.

Proof. Write dem(M) for the democratic core of M. An object of dem(M) consists of an object Γ ∈ M
together with a closed type KΓ an isomorphism Γ ∼= 1.KΓ. The rest of the structure is inherited from M. Then
the projection π : dem(M)→M is a split trivial fibration. Since M is algebraically cofibrant, the projection
admits a section, which witnesses the democracy of M. □

Construction 5.10. We write M for the Cof-fibrant replacement of M, i.e. the model freely generated by a
morphism i : M→M and a Cof-fibrancy structure. ⌟

Proposition 5.11. The model M is democratic.

Proof. This follows from the fact that M is obtained from the democratic model M by only adding new
terms and equations between terms. □

Lemma 5.12. The map iI : MI →MI exhibits MI as a Cof-fibrant replacement of MI.

Proof. This is an instance of lemma 2.2. □

Proposition 5.13. The displayed model HasWCoeM can be equipped with a displayed Cof-fibrancy structure.

Proof. Take a cofibration α and lines Γ : I→ ObM, A : (i : I)→M.Ty(Γ(i)), x : (i : I)→M.Tm(Γ(i), A(i)),
y : [α]→ (i : I)→M.Tm(Γ(i), A(i)) and p : [α]→ (i : I)→M.Tm(Γ(i), IdA(i)(x(i), y(i))).

We need to define weak coercion structures over the lines G(−) = GlueTm(x(−), y(−), e(−)) and g(−) =
glueTm(x(−), y(−), e(−)). They should match with the weak coercion structures of y and p under α.

Over the context (γ1 : Γ).(γ2.Γ).(γe : wcoer→s
Γ (γ1, γ2)), the type

(Ge : wcoer→s
A (γe, G(r), G(s)))× (ge : IdRelEquiv(wcoer→s

A (γe),wcoer→s
x (γe), Ge, g(r), g(s)))

is contractible (this follows from the definition of IdRelEquiv).
By lemma 5.4, this type has a term

〈
wcoer→s

G (γe),wcoer→s
g (γe)

〉
that restricts to

〈
wcoer→s

y (γe),wcoer→s
p (γe)

〉
under α.

Over the context (γ : Γ).(γe.wcoer→s
Γ (γ, γ)).(γr : wcohr

Γ(γ, γe)), the type

(Gr : wcohr
A(γr,wcoer→r

G (γe)))× (ge : IdisRefl(wcohr
A(γr),wcohr

x(γr), Gr,wcoer→r
g (γr)))

is contractible (this follows from the definition of IdisRefl).
By lemma 5.4, this type has a term

〈
wcohr

G(γr),wcohr
g(γr)

〉
that restricts to

〈
wcohr

y(γr),wcohr
p(γr)

〉
under

α. □

Proposition 5.14. The displayed model HasWCoeM →MI admits a global section.

Proof. By proposition 5.8, HasWCoeC → CI is a split trivial fibration. Since C is algebraically cofibrant, it
admits a section. By composing this section with HasWCoeC → HasWCoeC , we obtain a map CI → HasWCoeC

displayed over iI : CI → CI.
By combining this with proposition 5.13, we can use the universal property of CI from lemma 5.12 to

obtain a section of HasWCoeC → CI. □

As a consequence, every object, morphism, type or term of M can be equipped with a weak coercion
structure wcoe−.

Proposition 5.15. The model M has fibrant components.
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Proof. We use lemma 2.7 for A = (Γ : ObM)×M.Ty(Γ) and B(Γ, X) = M.Tm(Γ, X). The families EA, RA,
EB and RB are the corresponding finite limits of components of PathC and ReflLoopC , namely:

EA((Γ1, X1), (Γ2, X2)) = (Γe : RelEquiv(Γ1, Γ2))× (Xe : ∀γe → RelEquiv(X1(γ1), X2(γ2))),

RA((Γ, X), (Γe, Xe)) = (Γr : isRefl(Γe))× (Xe : ∀γr → isRefl(Xe(γe))),

EB((Γe, Xe), a1, a2) = ∀γe → Xe(γe, a1, a2),

RB((Γr, Xr), a, ae) = ∀γr → Xr(γr, a, ae).

By proposition 5.14, we have the required operations wcoe and wcoh.
It remains to construct extension structures

∀(Γe, Xe) a1 → HasExt((a2 : ∀γ2 → X2(γ2))× (∀γe → Xe(γe, a1(γ1), a2))),

∀(Γr, Xr) a→ HasExt((ae : ∀γe → Xe(γe, a(γ1), a(γ2)))× (∀γr → Xr(γr, a(γ), ae))).

We use lemma 5.4 in both cases (relying on Π-types to move to the empty context). The contractibility of
(a2 : ∀γ2 → X2(γ2)) × (∀γe → Xe(γe, a1(γ1), a2)) follows from Γe.

←−
fun and Xe.

−→
fun. The contractibility of

(ae : ∀γe → Xe(γe, a(γ1), a(γ2)))× (∀γr → Xr(γr, a(γ), ae)) relies on Γe.
←−
fun, Γr.refl and Xr.refl.

In fact the contractibility witnesses can be chosen to be ΠRelEquiv(Γe, Xe).
−→
fun and ΠisRefl(Γr, Xr).refl. □

Lemma 5.16. The external model 1∗□(M) has the universal property of the fibrant replacement of 1∗□(M).

Proof. Same as lemma 3.31. □

Proposition 5.17. The morphism 1∗□(i) : 1∗□(M)→ 1∗□(M) is a split weak equivalence.

Proof. Same as the proof of proposition 3.32, relying on proposition 4.27 and lemma 5.16. □

Theorem 5.18. Any global algebraically cofibrant model of HoTT with fibrant components admits a strict Rezk
completion.

Proof. We use the model M defined in construction 5.10. By proposition 5.15 it has fibrant components.
By proposition 5.5 it is saturated. By proposition 5.17 the morphism 1∗□(i) : 1∗□(M) → 1∗□(M) is a split
weak equivalence. □

Remark 5.19. The model of HoTT freely generated by any number of axioms (closed terms, without any new
equations) is algebraically cofibrant. This implies for example that the syntax of HoTT with coequalizers
admits a strict Rezk completion. ⌟

6. HOMOTOPY CANONICITY

We will prove the following theorem.

Theorem 6.1 (Homotopy canonicity). Let S be the initial model of HoTT with coequalizers.
For every closed term b : S .Tm(1, B), there is an element of

S .Tm(1, Id(b, true)) + S .Tm(1, Id(b, false)).

We work internally to cSet.
Let S be the model of HoTT freely generated by terms axiomatizing coequalizers. Because S is the initial

algebra of an external generalized algebraic theory, it coincides with the external syntax of HoTT with
coequalizers, i.e. the external model 1∗□(S) is also initial among external models of HoTT with coequalizers.

Write S for the Rezk completion of S , which exists by theorem 5.18, as noted in remark 5.19.

Lemma 6.2. Let A : S .Tyn(Γ) be a type. If A is contractible in S , then S .Tm(Γ, A) is contractible.

Proof. Since S is saturated, we have equivalences S .Tm(Γ, IdA(x, y)) ≃ (x ∼ y).
The type A is contractible in S , which means we have a center of contraction a0 : S .Tm(Γ, A) and

an identification p : S .Tm(Γ.(x : A).(y : A), IdA(x, y)). Since S is saturated, we have a path (x ∼ y)
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in S .Tm(Γ.(x : A).(y : A), IdA(x, y)). Now given x′, y′ : S .Tm(Γ, A), consider the substitution ⟨x′, y′⟩ :
S(Γ, Γ.(x : A).(y : A)). We have x[⟨x′, y′⟩] ∼ y[⟨x′, y′⟩], i.e. x′ ∼ y′.

This shows that S .Tm(Γ, A) has a center of contraction and is a homotopy proposition. It is therefore
contractible. □

Remark 6.3. More generally, A is contractible in S if and only if S .Tm(∆, A[ f ]) is contractible for any
f : ∆→ Γ (looking at Γ→ Γ and Γ.A.A→ Γ suffices). ⌟

The model S being saturated also implies the existence of an equivalence

id-to-path : S .Tm(Γ, IdA(x, y))→ (x ∼ y)

which sends refl to a homotopically constant path.

6.1. The canonicity model. In this subsection we define a (large) displayed higher-order model S• over S ,
which will be used to prove canonicity. It is very similar to the displayed higher-order model used to prove
canonicity for MLTT, except that we use logical predicates valued into fibrant sets.

A displayed type over a closed type A : S .Tyn(1) is a unary logical predicate valued in the universe of
n-small fibrant sets:

Ty•n(A) ≜ S .Tm(1, A)→ Setfibn .

A displayed term of type A• over a term a : S .Tm(1, A) is an element of the logical predicate A• at a:

Tm•(A•, a) ≜ A•(a).

6.1.1. Identity types. The logical predicate for identity types is defined as the HIT

Id• : ∀A x y (A• : Ty•(A)) (x• : A•(x)) (y• : A•(y))→ S .Tm(1, Id(A, x, y))→ Setfibn

generated by a single constructor

refl• : ∀A x (A• : Ty•(A)) (x• : A•(x))→ Id•(A•, x•, x•, S .refl(A, x)).

The displayed eliminator for the identity types is interpreted using the elimination principle of Id•.

Lemma 6.4. There is an equivalence Id•(A•, x•, y•, refl) ≃ (x• ∼ y•).

Proof. It suffices to prove that (y• : A•(x))× Id•(A•, x•, y•, refl) is contractible.
The universal property of Id• implies that

(y : S .Tm(Γ, A))× (p : S .Tm(1, Id(A, x, y))× (y• : A•(x))× Id•(A•, x•, y•, p)

is contractible, so the result follows from the contractibility of (y : S .Tm(Γ, A))× (p : S .Tm(1, Id(A, x, y)),
i.e. from S being saturated. □

6.1.2. Pi-types. Take a displayed type A• : Ty•n(A) and a family

B• : ∀(a : S .Tm(1, A)) (a• : A•(a))→ Ty•n(B[a]).

The logical predicate over the Π-type Π(A, B) is:

Π•(A•, B•) ≜ λ f 7→ (∀(a : S .Tm(1, A)) (a• : A•(a))→ B•(a•, app( f , a))).

6.1.3. Sigma-types. Take a displayed type A• : Ty•n(A) and a family

B• : ∀(a : S .Tm(1, A)) (a• : A•(a))→ Ty•n(B[a]).

The logical predicate over the Σ-type Σ(A, B) is:

Σ•(A•, B•) ≜ λp 7→ (a• : A•(fst(p)))× (b• : B•(a•, snd(p))).
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6.1.4. Boolean-types. The logical predicate over the Boolean-type B is the fibrant inductive family generated
by:

B• : S .Tm(1, B)→ Setfibn ,

true• : B•(true),

false• : B•(false).

6.1.5. W-types. Take a displayed type A• : Ty•n(A) and a family

B• : ∀(a : S .Tm(1, A)) (a• : A•(a))→ Ty•n(B[a]).

The logical predicate over the type W(A, B) is the fibrant inductive family generated by:

W• : S .Tm(1, W(A, B))→ Setfibn ,

sup• : ∀a f → (a• : A•(a))→ (∀b→ B•(a•, b)→W•( f (b)))→W•(sup(a, f )).

6.1.6. Coequalizers. Take displayed types A• : Ty•n(A) and B• : Ty•n(B) and maps

f • : ∀b (b• : B•(b))→ A•( f (a)),

g• : ∀b (b• : B•(b))→ A•(g(a)).

The logical predicate over the type Coeq( f , g) is the indexed higher inductive type generated by:

Coeq• : S .Tm(1,Coeq( f , g))→ Setfibn ,

i• : ∀a (a• : A•(a))→ Coeq•(i(a)),

p• : ∀b (b• : B•(b))→ i•( f •(b•)) ∼ i•(g•(b•)),

where the path p•(b, b•) lies over the line λi 7→ Coeq•(id-to-path(p(b), i)) between Coeq•(i( f (b))) and
Coeq•(i(g(b))).

6.1.7. Universes. Fix a universe level n.
The logical predicate for the n-th universe is

U•n ≜ λA 7→ (S.Tm(1,El(A))→ Setfibn ).

In other words, elements of U•(A) are n-small logical predicates over closed terms of type El(A).
We have isomorphisms El• : Tm•(U•n , A) ∼= Ty•(A).

6.1.8. Univalence. Last but not least, we have to define the displayed univalence structure.
We recall the definitions of the displayed contractibility witnesses and equivalences.

isContr•(A•, c) = (x• : A•(fst(c)))× (∀y (y• : A•(y))→ Id•(A•, x•, y•, app(snd(c), y))),

isEquiv•( f •, e)

= (∀b b• → isContr•(λ(a, p) 7→ (a• : A•(a))× (p• : Id•(B•, f •(a•), b•, p)), app(e, b))),

Equiv•(A•, B•, f ) = ( f • : ∀a→ A•(a)→ B•(app(fst( f ), a)))× isEquiv•( f •, snd( f )).

We start by relating these notions to cubical notions of contractibility and equivalences.

Lemma 6.5. Let A• : Ty•n(A) be a displayed type and c : S .Tm(1, isContr(A)) be a witness of the contractibility of
A.

Then there is an equivalence

isContr•(A•, c) ≃ (∀(a : S .Tm(1, A))→ isContr(A•(a))).

Proof. Since A is contractible in S , its set of terms S .Tm(1, A) is contractible by lemma 6.2. For any x, y :
S .Tm(1, A), the set S .Tm(1, IdA(x, y)) is also contractible by lemma 6.2.
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We have the following chain of equivalences:

isContr•(A•, c)

≃ (x• : A•(fst(c)))× (∀y (y• : A•(y))→ Id•(A•, x•, y•, app(snd(c), y))) (Definition)

≃ ∀(a : S .Tm(1, A))→ (x• : A•(a))× (∀(y• : A•(a))→ Id•(A•, x•, y•, app(snd(c), a)))
(Contractibility of S .Tm(1, A))

≃ ∀(a : S .Tm(1, A))→ (x• : A•(a))× (∀(y• : A•(a))→ Id•(A•, x•, y•, refl))
(Contractibility of S .Tm(1, IdA(a, a)))

≃ ∀(a : S .Tm(1, A))→ (x• : A•(a))× (∀(y• : A•(a))→ (x• ∼ y•)) (By lemma 6.4)

≃ ∀(a : S .Tm(1, A))→ isContr(A•(a)). (Definition of isContr) □

Lemma 6.6. Let A• : Ty•n(A) and B• : Ty•n(B) be two displayed types, along with a displayed map

f • : ∀a (a• : A•(a))→ B•(app( f , a))

and an element e : S .Tm(1, isEquiv( f )).
Then there is an equivalence

isEquiv•(A•, B•, e) ≃ (∀(a : S .Tm(1, A))→ isEquiv( f •a )).

Proof. We have the following chain of equivalences:

isEquiv•(A•, B•, e)

≃ ∀b b• → isContr•(λ(a, p) 7→ (a• : A•(a))× (p• : Id•(B•, f •(a•), b•, p)), app(e, b)) (Definition)

≃ ∀b b• → ∀a p→ isContr((a• : A•(a))× (p• : Id•(B•, f •(a•), b•, p))) (By lemma 6.5)

≃ ∀a b• → isContr((a• : A•(a))× (p• : Id•(B•, f •(a•), b•, refl))) (Contraction of (b, p) to (a, refl))

≃ ∀a b• → isContr((a• : A•(a))× (p• : f •(a•) ∼ b•)) (By lemma 6.4)

≃ ∀(a : S .Tm(1, A))→ isEquiv( f •a ). (Definition of isEquiv) □

We can now interpret univalence in S•. Take a displayed type A• : Ty•n(A). We have to construct

ua•(A•) : isContr•(λ(B, E) 7→ (B• : Tm(1, B)→ Setfibn )× Equiv•(A•, B•, E), ua(A)).

By lemma 6.5, it suffices to prove, for every B : Tyn(1) and E : Equiv(A, B), the contractibility of

(B• : S .Tm(1, B)→ Setfibn )× Equiv•(A•, B•, E).

By lemma 6.2 and univalence in S , the set (B : S .Tyn)× S .Tm(1, Equiv(A, B)) is contractible. We can
thus assume without loss of generality that (B, E) = (A, idA). By lemma 6.6, it then suffices to prove the
contractibility of

(B• : S .Tm(1, A)→ Setfibn )× ( f • : ∀a→ A•(a)→ B•(a))× (∀a→ isEquiv( f •a )).

We can move the quantification on a : S .Tm(1, A) outside of the contractibility condition. It then suffices
to prove, for every a, the contractibility of

(B• : Setfibn )× ( f • : A•(a)→ B•(a))× isEquiv( f •).

This is exactly univalence for the universe Setfibn , which holds in cartesian cubical sets.
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6.2. Homotopy canonicity. We have defined a displayed higher-order model S• of HoTT (with coequalizers)
over S . We can consider its displayed contextualization (sconing) SconeS• _ S . By the universal property
of the model S , we obtain a section J−K of SconeS• [i].

SconeS•

S S .
i

J−K

We can now prove homotopy canonicity:

Proof of theorem 6.1. We have to prove that the model 1∗□(S) satisfies homotopy canonicity. Let b be a global
element of S .Tm(1, B).

Applying the section J−K to b, we obtain a global element

JbK : B•(i(b)).

By the universal property of B•, we obtain a global element of

S .Tm(1, Id(i(b), true)) + S .Tm(1, Id(i(b), false)).

Since 1∗□(i) : 1∗□(S)→ 1∗□(S) is a split weak equivalence, we have a global element of

S .Tm(1, Id(b, true)) + S .Tm(1, Id(b, false)),

as needed. □

7. FUTURE WORK

In this paper we have only performed the construction of the strict Rezk completion that was needed for
the proof of homotopy canonicity. To enable their use in other applications, strict Rezk completions should
be studied more abstractly in future work.

We have constructed strict Rezk completions for the generalized algebraic theories of categories and
of democratic models of HoTT. The two proofs already share a large part of their structure; this should
be abstracted into general constructions for any generalized algebraic theories with a homotopy theory
satisfying some conditions.

We have shown that strict Rezk completions exist in cartesian cubical sets, and that the inclusions become
split weak equivalences after externalization. It would be interesting to generalize the constructions to
other presheaf models such as De Morgan cubical sets or (classically) simplicial sets. Since we use the
axiomatization of Cavallo, Mörtberg, and Swan (2020), our constructions are almost valid in De Morgan
cubical sets, except for the fact that we use diagonal cofibrations in the proof of proposition 3.27.

The externalization functor 1∗□ : cSet→ Set should also be generalized to other inverse image functors
F∗ : Psh(C) → Psh(A) such F∗(Cof) ∼= {true, false}, perhaps satisfying some other conditions. For
applications, functors of the form ⟨id, 1□⟩ : A→ (A×□) seem important.

As noted in remark 3.14, the strict Rezk-completion can be seen as a form of fibrant replacement,
parametrized by a notion of cofibration. Generally, any (algebraic) weak factorization system can be
parametrized by a notion of cofibration. Christian Sattler has suggested parametrizing whole homotopy
theories ((semi) model structures) by a notion of cofibration.

The extension structures of a strict Rezk completion M of a model M are not strictly stable under
substitution: we do not have extTm(x[ f ]) = extTm(x)[ f ] as a strict equality when x ∈ M.Tm(Γ, A) and
f ∈M(∆, Γ). They are however weakly stable, since contractibility is a homotopy proposition. It would be
interesting to know whether strict stability can be added, e.g. by taking a quotient of M. Having strictly
stable extension operations would make them available internally to Psh(M).
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