
For the Metatheory of Type Theory, Internal
Sconing Is Enough
Rafaël Bocquet #

Eötvös Loránd University, Budapest, Hungary

Ambrus Kaposi #

Eötvös Loránd University, Budapest, Hungary

Christian Sattler #

Chalmers University of Technology, Sweden

Abstract
Metatheorems about type theories are often proven by interpreting the syntax into models constructed
using categorical gluing. We propose to use only sconing (gluing along a global section functor)
instead of general gluing. The sconing is performed internally to a presheaf category, and we recover
the original glued model by externalization.

Our method relies on constructions involving two notions of models: first-order models (with
explicit contexts) and higher-order models (without explicit contexts). Sconing turns a displayed
higher-order model into a displayed first-order model.

Using these, we derive specialized induction principles for the syntax of type theory. The
input of such an induction principle is a boilerplate-free description of its motives and methods,
not mentioning contexts. The output is a section with computation rules specified in the same
internal language. We illustrate our framework by proofs of canonicity, normalization and syntactic
parametricity for type theory.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases type theory, presheaves, canonicity, normalization, sconing, gluing

Funding Ambrus Kaposi: Supported by the Bolyai Fellowship of the Hungarian Academy of Sciences
and by the “Application Domain Specific Highly Reliable IT Solutions” project of the National
Research, Development and Innovation Fund of Hungary, financed under the Thematic Excellence
Programme TKP2020-NKA-06 funding scheme.

1 Introduction

The syntax of a type theory can be presented as the initial object in the category of models
of a generalized algebraic theory (GAT), i.e. as a quotient inductive-inductive type (QIIT).
Initiality provides an induction principle for the syntax, namely the dependent eliminator of
the QIIT. Metatheoretic properties of the syntax, such as canonicity or normalization, can
then be proven by carefully constructing models of the theory displayed over the syntax, or
equivalently the motives and methods of the induction principle. However, the presentation
of the syntax as a QIIT includes an explicit encoding of the substitution calculus of the
theory; in particular every type or term former comes with a substitution rule. If all of the
components of a complicated model are written explicitly, one has to prove that they all
respect substitution. More importantly, when working exclusively at this level of generality,
it is not easy to abstract the proof methods into reusable theorems.

An alternative to the (first-order) genereralized algebraic presentation is to present a type
theory as a second-order or higher-order theory, for example by using a Logical Framework [21]
or Uemura’s representable map categories [38]. A higher-order presentation enables the use
of higher-order abstract syntax (HOAS), in which binders are encoded by metatheoretic
functions. In practice, this means that stability under substitution is implicit. Semantically,

mailto:bocquet@inf.elte.hu
https://orcid.org/0000-0001-6484-9570
mailto:akaposi@inf.elte.hu
http://orcid.org/0000-0001-9897-8936
mailto:sattler@chalmers.se
https://orcid.org/0000-0001-6374-4427

2 For the Metatheory of Type Theory, Internal Sconing Is Enough

HOAS admits an interpretation in the internal language of presheaf categories [23]. Within
the internal language of a presheaf category, all constructions are automatically stable under
the morphisms of the base category.

In this work we propose an approach that combines the strengths of the first-order and
higher-order presentations. We consider two notions of models of a type theory: first-order
models correspond to the first-order presentation, while higher-order models correspond
to the higher-order presentation. Typically, first-order models are categorical models of
type theory (categories with families equipped with additional structure), while higher-order
models are approximately universes closed under the type formers of the theory. Both of
these notions make sense both externally and in the internal language of a presheaf category.
We also have notions of displayed higher-order and first-order models, corresponding to the
motives and methods of induction principles. We present a small number of constructions
switching between external, internal, first-order and higher-order models. Any of these
constructions is individually simple, but they can be composed to derive the induction
principles we need to prove metatheoretic results. The constructions are listed below (FOM
= first-order model, HOM = higher-order model). The restriction and externalization oper-
ations can also be applied to displayed first-order models and morphisms of first-order models.

Construction Input Output
Internalization FOM M HOM C in Psh(M)

Set-contextualization HOM M FOM SetM
Telescopic contextualization HOM M FOM TeleM

Restriction Functor F : C → D, FOM F ∗(M) in Psh(C)FOM M in Psh(D)
Externalization FOM M in Psh(D) External FOM 1∗

D(M)

Scone-contextualization FOM M, Displayed FOM SconeM• over MDisplayed HOM M• over M

The most notable operations are the contextualizations1, which turn higher-order models
into first-order models. The Set-contextualization generalizes the construction of a first-
order model from a universe; its underlying category is always the category of sets. The
telescopic contextualization is the contextual core of the Set-contextualization; it restricts
the underlying category to a category of telescopes. The Scone-contextualization is a
generalization of the Set-contextualization to displayed higher-order and first-order models,
which correspond to the motives and methods of induction principles; its underlying category
is always the Sierpinski cone, also called scone, of some first-order model M.

Our main observation is that sconing (that is Scone-contextualization) internally to
a presheaf category corresponds when viewed externally to a more complicated gluing
construction. For example, the normalization model from [13] can be recovered as the
externalization of the Scone-contextualization of a displayed higher-order model constructed
in presheaves over the category of renamings.

The main intended application of these constructions is the statement and proofs of
relative induction principles. It is typically the case that the result of induction over the
syntax of type theory only holds over some of the syntactic contexts, or is only stable under
some of the syntactic substitutions. For example, canonicity only holds over the empty
context. Normalization holds over every context, but is only stable under renamings. This
situation is described by a functor into the syntax F : R → S: the result of the induction

1 The word contextualization reflects the fact that these operations make contexts explicit. It is not
related to the notion of contextual model.

R. Bocquet and A. Kaposi and C. Sattler 3

should be stable under the morphisms of R. These functors are called “figure shapes” by
Sterling [34], they are also related to worlds in Twelf [31]. We prove the relative induction
principles for the following functors.

1Cat → ST Canonicity [13] (Theorem 14)
RenS → ST Normalization [4, 13] (Theorem 18)
□ → SCTT (Homotopy/strict) canonicity for cubical type theory [14] (Theorem 33)
A□ → SCTT Normalization for cubical type theory [36] (Theorem 36)

We also show how to prove canonicity and normalization by instantiating the relative induction
principles for 1Cat → ST and RenS → ST . We don’t prove canonicity nor normalization for
cubical type theory, but we expect that the currently known proofs could be reformulated as
instances of the relative induction principles for □ → SCTT and A□ → SCTT.

Typically, the category R can be described as the initial object of some category of
structured categories. A relative induction principle with respect to the functor F is an
induction principle that combines the universal properties of R and S. In our previous
work [10], the relative induction principles were stated in terms of the rather ad-hoc notions
of “displayed models without context extensions” and “relative sections”. In the present
work, the input of a relative induction principle is a displayed higher-order model S•, and
the result is just a (first-order) section J−K of SconeS• . The previous notion of “displayed
model without context extension” is recovered in the special case of displayed higher-order
models over F ∗(TeleS). The following diagram illustrates the constructions involved in the
statement and proof of a relative induction principle (F : R → S).

External Internal to Psh(S) Internal to Psh(R)

First-order

Higher-order

S

S

TeleS F ∗(TeleS) SconeS•

S•
Internalization

Telescopic
contextualization

Restriction

Scone-
contextualization

Both S• and SconeS• are displayed over the internal first-order model F ∗(TeleS).

S• SconeS•

F ∗(TeleS)

J−K

An important feature of our work is that the section J−K admits good computational
behaviour, although we do not formally analyze this behaviour. In fact, part of our under-
standing comes from looking at the computational behaviour of the congruence operation ap
in higher observational type theory [33, 6], which is also a morphism of (first-order) models
internally to presheaves over the syntax of H.O.T.T.

Related work
Logical relations and categorical gluing. The initial motivation for this work was the
understanding of algebraic and reduction-free normalization proofs for dependent type
theories. Variants of categorical gluing were used to prove canonicity or normalization

4 For the Metatheory of Type Theory, Internal Sconing Is Enough

for simple types [2, 16, 37], System F [3], and dependent types [4, 13, 15]. These can be
contrasted with reduction based normalization proofs such as [1, 32].

Logical relations were used to prove syntactic parametricity for type theory [9, 5] and
definability for simply typed lambda calculus [26]. It was shown that categorical gluing
generalizes both syntactic parametricity and canonicity proofs [28].

Logical frameworks and higher-order abstract syntax. Higher-order abstract syntax (HOAS)
is the use of metatheoretic functions to specify syntactic binders. Hofmann [23] has explained
how HOAS can be interpreted in the internal language of presheaf categories.

Uemura [38] has given a general definition of type theory based on these ideas, which
we will call second-order generalized algebraic theories (SOGATs). It generalizes notions of
second-order algebraic theories that have been studied by Fiore and Mahmoud [17]. Harper
presents an equational variant of logical framework [20] for defining theories with bindings
corresponding to SOGATs. We believe that the constructions in our paper generalize to
any SOGAT. Gratzer and Sterling [19] propose using LCCCs to define higher order theories
(without representability conditions) which correspond to our higher order models, but we
also consider first order models.

Synthetic Tait computability. Synthetic Tait computability (STC, [34, 35]) is an approach
that relies on the internal language of the Artin gluing of toposes, typically constructed
by gluing syntactic and semantic toposes. A pair of open/closed modalities can be used to
distinguish the syntactic and semantic parts in the internal language of the Artin gluing.
STC has been applied to proofs of normalization for cubical type theory [36], multimodal
type theory [18] and simplicial type theory [39].

Both STC and our approach provide a synthetic setting for proofs of metatheorems. Our
approach is perhaps simpler in some aspects, e.g. we don’t use any modalities and don’t need
to use realignment; we acknowledge that this is partly a matter of preference. The main
advantage of our approach over STC is that we have an internal specification of the result of
an induction principle.

In his thesis [34], Sterling briefly discusses the notion of Henkin model of a higher-order
theory. A Henkin model is a higher-order model with a non-standard interpretation of the
dependent products. We note that Henkin models are closely related to first-order models:
the Henkin models of a second-order theory are equivalent to the democratic first-order
models (this is [38, Theorem 7.30]).

Contributions
The main takeaway of this paper is that when using HOAS, we should not discard the first
order presentation, even in an internal setting. In particular, the right notion of displayed
higher-order model (input of an induction principle) lies over a first-order model. The output
of an induction principle is also a section of first-order models, still internal.

The technical contributions are:
the relative induction principles which combine the initiality of the underlying category
and initiality of the syntax; we derive four such induction principles;
the internalization, contextualization, externalization constructions which let us formulate
the relative induction principles;
the derivation of internal sections by analyzing the category of sections.

The main takeaway is supported by applications of the induction principles: boilerplate-free
proofs of canonicity, normalization and syntactic parametricity. To our knowledge, this paper

R. Bocquet and A. Kaposi and C. Sattler 5

is the first defining the latter in a synthetic setting. The fact that the notion of section is
specified internally has the feature that we can reuse it directly in subsequent inductions.
We exploit this in the proof of uniqueness of normal forms which is proven in a separate step
after normalization, relying on how the section computes normal forms.

Structure of the paper

In Section 2 we define first-order- and higher-order models of an example type theory, and
constructions relating them. In Section 3, we define displayed higher order models which
collect the motives and methods of an induction principle. We also define sconing which
turns a displayed higher order model into its first order variant, also providing a notion
of section. Then we move on to applications: we prove canonicity in Section 4 using an
induction principle relative to the empty context (Theorem 14) which is a trivial consequence
of our previous definitions. In Section 5, we prove normalization using an induction principle
relative to renamings (Theorem 18). This induction principle is proved using the methods
described in Section 6. Another application (syntactic parametricity) of Theorem 14 is
described in Appendix B, and the cubical variants of the above induction principles are
proven in Appendix C.

Background

We assume some familiarity with the categorical semantics of type theory [11, 5] and with
the use of extensional type theory as the internal language of presheaf categories [22].

We use the notion of locally representable dependent presheaf to encode context extensions
(see Definition 21). This definition is a more indexed formulation of the notion of representable
natural transformation, which was used by Awodey to give an alternative definition of CwFs,
known as natural models [8].

2 First-order and higher-order models

Our running example is a minimal dependent type theory T with only Π-types, but our
constructions directly generalize to larger type theories. Some other type theories are
considered in the appendix, including dependent type theories with universes and cubical
type theories. We leave generalization to arbitrary second-order generalized algebraic theories
to future work.

We define notions of higher-order and first-order models for T . A higher-order model is
essentially a universe closed under dependent products, while a first-order model is a category
with families (CwF) equipped with Π-types. The higher-order models are the models of some
higher-order theory T ho (a theory whose operations can have a higher-order sort; classified
by some locally cartesian closed category), whereas the first-order models are the models
of some (first-order) essentially2 algebraic theory T fo (a theory whose operations have a
first-order sort; classified by some finitely complete category).

2 The distinction between generalized algebraic theories and essentially algebraic theories is not relevant
in this paper.

6 For the Metatheory of Type Theory, Internal Sconing Is Enough

2.1 Definitions
▶ Definition 1. A higher-order model of T consists of the following families and opera-
tions:

Ty : Set,
Tm : Ty → Set,
Π : ∀(A : Ty)(B : Tm(A) → Ty) → Ty,

app : ∀A B (f : Tm(Π(A, B))) (a : Tm(A)) → Tm(B(a)),
lam : ∀A B (b : (a : Tm(A)) → Tm(B(a))) → Tm(Π(A, B)),

subject to equations corresponding to the β- and η-rules:

lam(λa 7→ app(f, a)) = f, app(lam(b), a) = b(a). ⌟

▶ Definition 2. A first-order model of T is a CwF C equipped with Π-types. ⌟

The notion of first-order model can be presented by a first-order generalized algebraic
theory T fo. Equivalently, a first-order model is a category C with a terminal object 1C , along
with a (global) higher-order model C of T in Psh(C) such that the dependent presheaf C.Tm
is locally representable. The higher-order model C is called the internalization of C.

We use blackboard bold letters M, N, C, S, R, etc. to refer to higher-order models, and
calligraphic letters M, N , C, S, R, etc. to refer to first-order models. We try to use the
corresponding letter for the underlying internal higher-order model of a first-order model,
e.g. if C is an external first-order model, we use C for its underlying internal higher-order
model in Psh(C). We denote the components of a model by C.Ty, C.Tm, C.Π, etc.

We write ModT for the 1-category of first-order models of T , and ST or just S for its
initial object (the letter “S” standing for both syntax and substitutions).

2.2 Contextualization
In general, we almost never want to construct all of the components of a first-order model
explicitly, because checking functoriality and naturality conditions without relying on the
internal language of a presheaf model is tedious. For some models however, the functoriality
and naturality conditions hold trivially. This is the case for the “standard model” of type
theory over the category of sets: when defining this standard model in intensional type
theory, all naturality and functoriality conditions hold definitionally.

The construction of the standard model generalizes to the construction of a first-order
model from a higher-order model, which we now describe.

▶ Construction 3 (Set-Contextualization). Let M be a higher-order model of T . We construct
a first-order model SetM, called the Set-contextualization of M. Its underlying category is
the category Set of sets.

The types and terms of SetM are indexed families of types and terms of M:
A type over Γ ∈ Set is a function Γ → M.Ty.
Type substitution along a function f : ∆ → Γ is precomposition with f .
A term of type A : Γ → M.Ty is a dependent function (γ : Γ) → M.Tm(A(γ)).
Term substitution along a function f : ∆ → Γ is precomposition with f .
The functoriality of substitution is associativity of function composition.

R. Bocquet and A. Kaposi and C. Sattler 7

The context extensions are given by dependent sums in Set:

(Γ.A) ≜ (γ : Γ) × M.Tm(A(γ)).

The type-theoretic operations are all defined pointwise:

SetM.Π(Γ, A, B) ≜ λγ 7→ M.Π(A(γ), λa 7→ B(γ, a)),
SetM.app(Γ, f, a) ≜ λγ 7→ M.app(f(γ), a(γ)),
SetM.lam(Γ, b) ≜ λγ 7→ M.lam(λa 7→ b(γ, a)).

The β- and η-rules for SetM hold as a consequence of the corresponding rules for M.
The naturality conditions are all trivial. For example, in the case of the Π type former,

we have to check Π(Γ, A, B)[f] = Π(∆, A[f], B[f+]) for any f : ∆ → Γ, where f+(γ, a) =
(f(γ), a). This amounts to checking the equality

(λγ 7→ M.Π(A(γ), λa 7→ B(γ, a))) ◦ f = (λγ 7→ M.Π((A ◦ f)(γ), λa 7→ (B ◦ f+)(γ, a))). ⌟

▶ Remark 4. Note that the underlying category Set of SetM now has two CwF structures:
An inner CwF structure, as defined in Construction 3.
An outer CwF structure, corresponding to the usual CwF structure on the category of
sets, modeling extensional type theory.

Together, they form a model of two-level type theory [7].

2.3 Telescopic contextualization
A first-order order model is said to be contextual when every object can be uniquely written
as an iterated context extension starting from the empty context. The contextual first-order
models form a coreflective subcategory Modcxl

T of ModT : the inclusion Modcxl
T → ModT

has a right adjoint cxl: the contextual core cxl(C) has as objects the iterated context extensions
of C, also known as telescopes, over the empty context.

▶ Definition 5. Let M be a higher-order model of T . The telescopic contextualization
TeleM is the contextual core of the Set-contextualization SetM. ⌟

By general properties of the contextual core, there is a model morphism ⌊−⌋ : TeleM →
SetM that is bijective on types and terms. (There is a cofibrantly generated factorization
system on first-order models with such morphisms as its right class. The contextual models
are precisely those in the left class.)

When working internally to some presheaf category Psh(C), another related construction
involves the internal subcategory spanned by よ : ObC → Set, where ObC is the discrete
presheaf on the set of objects of C, and よ internalizes the Yoneda embedding. This “Yoneda
universe” has been used by Hu et al. [24] to give semantics to contextual types.

2.4 Internal first-order models
Since the notion of first-order model is described by an essentially algebraic theory, it can
be interpreted in any finitely complete category. In particular, there is a notion of internal
first-order model in any category Ĉ of small presheaves, obtained by letting Set stand for the
Hofmann-Streicher universe of the presheaf topos Psh(C) in the definition of model.

▶ Proposition 6. The following three notions are equivalent:
1. First-order models of T in Psh(C);

8 For the Metatheory of Type Theory, Internal Sconing Is Enough

2. Finite limit preserving functors T fo → Ĉ, where T fo is the finitely complete category
classifying the first-order models of T ;

3. Functors C → Modop
T .

Proof. This is well-known [25, D1.2.14]. The equivalence between (1) and (2) is the fact
that T fo classifies the first-order models of T . The equivalence between (2) and (3) follows
from the fact that finite limits in Ĉ are computed pointwise. ◀

2.5 Restriction and externalization
Another important operation on first-order models is the restriction of a first-order model M
internal to Psh(D) along a functor F : C → D. This restricted model F ∗(M) is a first-order
model internal to Psh(C). If M is seen as a functor D → Modop

T , then the restriction
F ∗(M) : C → Modop

T is simply the precomposition (M ◦ F). If M is seen instead as a
finite-limits preserving functor T fo → Psh(D), then F ∗(M) is postcomposition with the
inverse image functor F ∗ : Psh(D) → Psh(C). These two definitions coincide up to the
equivalence of Proposition 6; which is thus natural in the base category.
▶ Remark 7. A more explicit computation of the restriction can be given in the internal
language of Psh(C) using the dependent right adjoint associated to the adjunction (F! ⊣ F ∗).
When M is the Set- or telescopic contextualization of a higher-order model, then the
dependent right adjoint allows for the use of HOAS when working with F ∗(M). ⌟

A special case of the restriction is the externalization of an internal first-order model.

▶ Definition 8. Let C be any category with a terminal object 1C, and consider the functor
1C : 1Cat → C that selects this terminal object. For any internal first-order model M in
Psh(C), we have an external first-order model 1∗

C(M), called the externalization of M. ⌟

Given any higher-order model M in Psh(C), we can construct the externalization
1∗

C(TeleM) of its telescopic first-order model. Up to isomorphism, all external contextual
first-order models arise as the externalization of a telescopic contextualization.

▶ Lemma 9. Let C be an external first-order model, with C its underlying internal higher-order
model. Then 1∗

C(TeleC) is the contextual core of C.

Proof. See Corollary 24. ◀

In particular, since the initial model S is contextual, the externalization 1∗
S(TeleS) of its

telescopic contextualization is isomorphic to S.
We can also construct the externalization 1∗

C(SetC) of the internal Set-contextualization
of an higher-order model C. The underlying category of 1∗

C(SetC) is the category of presheaves
over C (restricted to some universe level); and 1∗

C(SetC) is an external model of two-level type
theory (its underlying category is the restriction of Psh(C) to some universe level). Recall
that there is, internally to Psh(C), a morphism ⌊−⌋ : TeleC → SetC of first-order models.
This morphism can also be externalized, giving an external morphism 1∗

C(⌊−⌋) : 1∗
C(TeleC) →

1∗
C(SetC) of first-order models. When 1∗

C(TeleC) ∼= C, this is a simple construction of the
embedding of C into the presheaf model of two-level type theory.

3 Displayed higher-order models

3.1 Motives and methods
We now define the notion of displayed higher-order model, which collects the motives and
methods of induction principles. One could expect that a displayed higher-order model

R. Bocquet and A. Kaposi and C. Sattler 9

would be displayed over a base higher-order model. We instead define the notion of displayed
higher-order model over a base first-order model; it is always possible to turn higher-order
models into first-order models using a contextualization, but not every first-order model
arises in this way.

▶ Definition 10. Let M be a first-order model of T . A displayed higher-order model
M• over M consists of the following data:

Ty• : M.Ty(1M) → Set,
Tm• : ∀(A : M.Ty(1M)) (A• : Ty•(A)) → M.Tm(1M, A) → Set,
Π• : ∀(A : M.Ty(1M)) (A• : Ty•(A))

(B : M.Ty(1M.A)) (B• : ∀(a : M.Tm(1M, A))(a• : Tm•(A•, a)) → Ty•(B[a]))
→ Ty•(Π(A, B)),

app• : ∀A A• B B• (f : M.Tm(1M, Π(A, B))) (f• : Tm•(Π•(A•, B•), f))
(a : M.Tm(1M, A)) (a• : Tm•(A•, a))
→ Tm•(B•(a•), app(f, a)),

lam• : ∀A A• B B• (b : M.Tm(1M.(a : A), B[a]))
(b• : ∀(a : M.Tm(1M, A))(a• : Tm•(A•, a)) → Tm•(B•(a•), b[a]))
→ Tm•(Π•(A•, B•), lam(b)),

such that the following equalities hold:

app•(lam•(b•), a•) = b•(a•), lam•(λa• 7→ app•(f•, a•)) = f•. ⌟

Most of the components of a displayed higher-order model only depend on the closed
types and terms of M; only the binders need to refer to open types and terms.

Note that the data of a displayed higher-order model over the terminal first-order model
is equivalent to the data of a non-displayed higher-order model.

3.2 Displayed contextualization
Given any displayed higher-order model M• over M, we construct a displayed first-order
model over M. This construction is a displayed generalization of the Set-contextualization.

The underlying displayed category of this construction is the Sierpinski cone, or scone,
of M. The scone of a category C with a terminal object is the comma category (Set ↓ ΓC),
where ΓC : C → Set is the global section functor ΓC = C(1C , −).

▶ Construction 11 (Displayed contextualization). Fix a displayed higher-order model M• over
a first-order model M. We construct a displayed first-order model SconeM• over M, called
the displayed contextualization of M•.

An object of SconeM• over Γ ∈ M is a family

Γ† : M(1M, Γ) → Set

over the global elements (i.e. closing substitutions) of Γ.
A morphism of SconeM• from Γ† to ∆† over a base morphism f : M(Γ, ∆) is a family

f† : ∀(γ : M(1M, Γ)) → Γ†(γ) → ∆†(f ◦ γ).

10 For the Metatheory of Type Theory, Internal Sconing Is Enough

The identity displayed morphism is given by

id† ≜ λγ γ• 7→ γ•,

whereas the composition of two displayed morphisms f† and g† is

f† ◦† g† ≜ λγ γ• 7→ f†(g†(γ•)).

A type of SconeM• over an object Γ† and a type A : M.Ty(Γ) is a function

A† : ∀γ (γ† : Γ†(γ)) → Ty•(A[γ]).

The restriction of A† along a displayed morphism f† is

A†[f†] ≜ λγ• 7→ A†(f†(γ•)).

A term of SconeM• of type A† over an object Γ† and a term a : M.Tm(Γ, A) is a function

a† : ∀γ (γ• : Γ†(γ)) → Tm•(A†(γ•), a[γ]).

The restriction of a† along a displayed morphism f† is

a†[f†] ≜ λγ• 7→ a†(f†(γ•)).

The empty displayed context is the family

1† ≜ λ_ 7→ 1.

The extension of a displayed context Γ† by a displayed type A† is the family

(Γ†.A†) ≜ λ⟨γ, a⟩ 7→ (γ• : Γ†(γ)) × A†(γ•, a).

All type- and term- formers are defined pointwise using the corresponding component of
M•:

Π†(A†, B†) ≜ λγ• 7→ Π•(A†(γ•), λa• 7→ B†(γ•, a•)),
app†(f†, a†) ≜ λγ• 7→ app•(f†(γ•), a†(γ•)),

lam†(b†) ≜ λγ• 7→ lam•(λa• 7→ b†(γ•, a•)).

The β- and η-rules hold as a consequence of the β- and η-rules of M•.
All naturality conditions are trivial. ⌟

Note that when M is a higher-order model seen as a displayed higher-order model over
the terminal first-order model, then SconeM is equivalent to SetM.

3.3 Sections of a displayed higher-order model
The notion of displayed higher-order model corresponds to the motives and methods of an
induction principle. We now define the notion of section of a displayed higher-order model,
corresponding to the result of applying an induction principle: it is simply defined as a
section of the displayed contextualization.

▶ Definition 12. A section of a displayed higher-order model M• is a section J−K of its
displayed contextualization SconeM• (in ModT). ⌟

R. Bocquet and A. Kaposi and C. Sattler 11

The definition of section of a displayed higher-order model M• over M can be unfolded
to the following components:

For every object Γ : M, a family

JΓK : M(1M, Γ) → Set

of environments.
For every morphism f : M(Γ, ∆), a family

JfK : ∀γ → JΓK(γ) → J∆K(f ◦ γ)

of maps between environments.
For every type A : M.Ty(Γ), a family

JAK : ∀γ (γ• : JΓK(γ)) → Ty•(A[γ])

of displayed types over closures of A.
For every term a : M.Tm(Γ, A), a family

JaK : ∀γ (γ• : JΓK(γ)) → Tm•(JAK(γ•), a[γ])

of displayed terms over closures of a.
Subject to functoriality and naturality equations:

JidK(γ•) = γ•,

Jf ◦ gK(γ•) = JfK(JgK(γ•)),
JA[f]K(γ•) = JAK(JfK(γ•)),
Ja[f]K(γ•) = JAK(JfK(γ•)).

Such that context extensions are preserved:

J1MK(⋆) = {⋆},

JΓ.AK(γ, a) = (γ• : JΓK(γ)) × (a• : Tm•(JAK(γ•), a)),
Jλγ 7→ (δ(γ), a(γ))K(γ) = (JδK(γ), JaK(γ)).

With computation rules for every type and term former:

Jλγ 7→ Π(A(γ), λa 7→ B(γ, a))K(γ•) = Π•(JAK(γ•), λa• 7→ JBK(γ•)),
Jλγ 7→ app(f(γ), a(γ))K(γ•) = app•(JfK(γ•), JaK(γ•)),
Jλγ 7→ lam(b(γ))K(γ•) = lam•(λa• 7→ JbK(γ•, a•)).

When x is a closed type or term of M, we write JxK for the interpretation JxK(⋆) of x in the
empty environment. We may use underlined names to distinguish the variable of open terms.
For instance, we may write Japp(f, a)K[f 7→ f ′, a 7→ a′] instead of Jλ(f, a) 7→ app(f, a)K(f ′, a′).
▶ Remark 13. Let S• be a displayed higher-order model over the first-order model F ∗(TeleS)
in Psh(C), for some functor F : C → S. The displayed contextualization SconeS• is a dis-
played first-order model over F ∗(TeleS). Then its externalization 1∗

C(SconeS•) is an external
displayed first-order model lying over 1∗

C(F ∗(TeleS)) = 1∗
S(TeleS). Up to the isomorphism

1∗
S(TeleS) ∼= S, the externalized Scone-contextualization 1∗

C(SconeS•) coincides with gluing.
Its underlying category is the comma category (S ↓ NF), where NF : S → Psh(C) is the
nerve functor S よ−→ Psh(S) F ∗

−−→ Psh(C). ⌟

12 For the Metatheory of Type Theory, Internal Sconing Is Enough

4 Example: canonicity proof

As a first example of a relative induction principle and its application, we prove canonicity
for T extended with booleans (given by a type former Bool with constructors true and false
and a dependent eliminator elimBool with two computation rules).

We use the induction principle relative to the functor 1S : 1Cat → S that selects the
terminal object in the syntax S. It turns out that proving this specific relative induction
principle is trivial.

▶ Theorem 14 (Induction principle for S relative to 1S : 1Cat → S).
Let S• be a displayed higher-order model over the initial model S, or equivalently over
1∗

S(TeleS). Then SconeS• admits a section J−K over S.

Proof. By initiality of S. ◀

We now construct the displayed higher-order model S• over 1∗
S(TeleS) that will be used to

prove canonicity. A displayed type A• over a closed type A : S.Ty(1S) is a Set-valued logical
predicate over the closed terms of type A:

Ty•(A) ≜ S.Tm(1S , A) → Set.

A displayed term a• of type A• over a closed term a : S.Tm(1S , A) is an element of the
logical predicate A• evaluated at a:

Tm•(A•, a) ≜ A•(a).

Given logical predicates A• and B•, the logical predicate Π•(A•, B•) expresses the fact that
functions f : S.Tm(1S , Π(A, B)) should preserve the logical predicates.

Π•(A•, B•) ≜ λ(f : S.Tm(1S , Π(A, B))) 7→ (∀a a• → B•(a•, app(f, a))),
app•(f•, a•) ≜ f•(a•),
lam•(b•) ≜ λa• 7→ b•(a•).

It is easy to check that the displayed β- and η-rules hold. The logical predicate Bool• :
S.Tm(1S , Bool) → Set is defined as an inductive family with two constructors true• :
Bool•(true) and false• : Bool•(false). The displayed eliminator elim•

Bool is defined using the
elimination principle of Bool• and the displayed β-laws hold. This concludes the definition
of all components of S•.

▶ Theorem 15. The initial model S satisfies canonicity: any closed boolean term b :
S.Tm(1S , Bool) is canonical, i.e. equal to exactly one of true or false.

Proof. By the relative induction principle Theorem 14, the displayed higher-order model
S• admits a section J−K. Now given a closed boolean term b : S.Tm(1S , Bool), we have JbK :
Tm•(JBoolK, b). By the computation rule of the section for Bool, Tm•(JBoolK, b) = Bool•(b).
Thus, JbK : Bool•(b) witnesses the fact that b is canonical.

Since JtrueK = true•, JfalseK = false• and true• ̸= false•, we know that true ̸= false. ◀

Note that in the canonicity proof, we have not needed to evaluate the section J−K on
non-closed types or terms. Evaluating the section on open types and terms is usually only
needed when encountering binders: the evaluation of the section on a closed binder depends
on the evaluation of the section on an open type or term. The following is an example of the

R. Bocquet and A. Kaposi and C. Sattler 13

computation of the evaluation of the section J−K on the application of the boolean negation
function lam(λb 7→ elimBool(Bool, false, true, b)) to true.

Japp(lam(λb 7→ elimBool(Bool, false, true, b)), true)K
= Jlam(λb 7→ elimBool(Bool, false, true, b))K(JtrueK)
= (λb• 7→ JelimBool(Bool, false, true, b)K[b 7→ b•])(true•)
= JelimBool(Bool, false, true, b)K[b 7→ true•]
= elim•

Bool(Bool•, false•, true•, true•)
= false•.

5 Example: normalization proof

In this section we prove normalization for the initial model S of T using an induction
principle relative to F : RenS → S, where RenS is the category of renamings of S, i.e. the
category whose morphisms are the substitutions of S that are built out of variables. We use
the alternative definition from [10] of RenS as the initial object in a category of first-order
renaming algebras.

5.1 The category of renamings
▶ Definition 16. Let C be a first-order model of T . A higher-order renaming algebra C
over C consists of:

C.Var : C.Ty(1C) → U ,

C.var : (A : C.Ty(1C)) → C.Var(A) → C.Tm(1C , A). ⌟

▶ Definition 17. Let D be a first-order model of T . A first-order renaming algebra
over D is a category C with a terminal object along with a functor F : C → D that preserves
the terminal object and with the structure of a global higher-order renaming algebra C
over F ∗(TeleD) such that C.Var is locally representable and C.var strictly preserves context
extensions. ⌟

Equivalently, a first-order renaming algebra over D is a CwF C together with a CwF
morphism F : C → D whose action on types is bijective. (There is a cofibrantly generated
factorization system with such morphisms as its right class. The renaming algebras are the
objects in the left class.) The category of first-order renaming algebras over S is locally finitely
presentable, and there is an initial first-order renaming algebra RenS . The category RenS

is the category of renamings of S; in this section we write F for the functor F : RenS → S.

5.2 Relative induction principle
We pose SF ≜ F ∗(TeleS); SF is an internal first-order model in Psh(RenS).

▶ Theorem 18 (Induction principle for S relative to F : RenS → S).
Let S• be a displayed higher-order model over SF . Given the additional data of

var• : ∀(A : SF .Ty(1SF
)) (A• : Ty•(A)) (x : Var(A)) → Tm•(A•, var(x)),

the displayed contextualization SconeS• admits a section J−K that satisfies the additional
computation rule JvarA(x)K = var•(JAK, x).

14 For the Metatheory of Type Theory, Internal Sconing Is Enough

Proof. See Appendix A.4. ◀

Note that varA(x) is always a closed term of SF , thus JvarA(x)K does not depend on any
environment.

5.3 Normal forms
Neutrals and normal forms are defined internally to Psh(RenS), as inductive families

Ne, Nf : ∀(A : SF .Ty(1SF
)) (a : SF .Tm(1SF

, A)) → Set,

generated by the following constructors:

varne : (x : Var(A)) → NeA(var(x)),
appne : NeΠ(A,B)(f) → NfA(a) → NeB[a](app(f, a)),

lamnf : ((a : Var(A)) → NfB[a](b[a])) → NfΠ(A,B)(lam(b)).

The goal of normalization is to prove that every term has a unique normal form:

∀(A : SF .Ty(1SF
)) (a : SF .Tm(1SF

, A)) → isContr(NfA(a)).

This is accomplished in two steps. First a normalization function is obtained from the
relative induction principle, witnessing the existence of normal forms. Then the uniqueness
of normal forms is derived from the stability of the normalization; a fact that is proven by
mutual induction on neutrals and normal forms.

5.4 Normalization displayed model
We now construct the normalization displayed higher-order model S• over SF .

A displayed type A• : Ty•(A) over a type A : SF .Ty(1SF
) is a triple (A•

p, A•
u, A•

q) consisting
of a logical predicate A•

p : SF .Tm(1SF
, A) → Set, over the terms of type A, valued in the

universe of sets; an unquoting (or reflection) function A•
u : (a : SF .Tm(1SF

, A)) → NeA(a) →
A•

p(a), witnessing the fact that any neutral term satisfies the logical predicate A•
p; a quoting

(or reification) function A•
q : (a : SF .Tm(1SF

, A)) → A•
p(a) → NfA(a), witnessing the fact a

term satisfying the logical predicate A•
p admits a normal form. A displayed term a• of type

A• over a term a : SF .Tm(1SF
, A) is an element of A•

p(a): Tm•(A•, a) ≜ A•
p(a). The logical

predicate for Π-types is defined in the same way as in the canonicity model.

Π•
p(A•, B•)(f) ≜ (∀a a• → B•

p(a•, app(f, a))).

The unquoting function relies on the unquoting function of the codomain and the quoting
function of the domain.

Π•
u(A•, B•)(fne) ≜ λa• 7→ B•

u(a•, appne(fne, A•
q(a•))).

The quoting function says that any element of a Π-type is a lambda, as implied by the η-rule.
It relies on the quoting function of the codomain and the unquoting function of the domain,
and on the fact that every variable is neutral.

Π•
q(A•, B•)(f•) ≜ lamnf(λa 7→ let a• = A•

u(varne(a)) in B•
q (a•, f•(a•))).

R. Bocquet and A. Kaposi and C. Sattler 15

This completes the definition of the displayed higher-order model S•. It remains to check the
last hypothesis of the relative induction principle:

var• : ∀A A• (x : Var(A)) → Tm•(A•, var(x)),
var•(A•, x) ≜ A•

u(varne(x)).

By the relative induction principle (Theorem 18), we obtain a section J−K of SconeS• .
We can then define the normalization function as follows:

norm : ∀A (a : SF .Tm(1SF
, A)) → NfA(a),

normA(a) ≜ JAKq(JaK).

5.5 Stability of normalization and uniqueness of normal forms

Finally, we show the uniqueness of normal forms following [27]: we prove that normalization
is stable, that is every normal form for a term a is equal to the normal form of a obtained
from the normalization function. As the proof relies on most of the computation rules of the
section J−K, it is a good example of computations with a section.

▶ Lemma 19 (Stability). Given any normal form anf : NfA(a), we have anf = normA(a).

Proof. We prove the following two facts, by mutual induction on neutrals and normal forms:

(ane : NeA(a)) → JaK = JAKu(ane), (anf : NfA(a)) → anf = JAKq(JaK).

Each case involves some of the computation rules of J−K.

Case ane = varne(A, x)

JvarA(x)K
= var•(JAK, x) (by the computation rule for Jvar(−)K)
= JAKu(ane). (by definition of var•)

Case ane = appne(fne, anf)

Japp(f, a)K
= app•(JfK, JaK) (by the computation rule for Japp(−)K)
= JfK(JaK) (by definition of app•)
= JΠ(A, B)Ku(fne, JaK) (by the induction hypothesis for fne)
= JB[a]Ku(appne(fne, anf)).

(by definition of Π•
u and the induction hypothesis for anf)

16 For the Metatheory of Type Theory, Internal Sconing Is Enough

Case anf = lamnf(bnf)

JΠ(A, B)Kq(Jlam(b)K)

= Π•
q(JAK, λa• 7→ JB(a)K[a 7→ a•])(λa• 7→ Jb(a)K[a 7→ a•])

(by the computation rules for JΠ(−)K and JlamK)

= lamnf(λa 7→ let a• = JAKu(varne(a)) in (JB(a)K[a 7→ a•])q(Jb(a)K[a 7→ a•])
(by definition of Π•

q)

= lamnf(λa 7→ (JB(a)K[a 7→ Jvar(a)K])q(Jb(a)K[a 7→ Jvar(a)K]))
(by the computation rule for Jvar(a)K)

= lamnf(λa 7→ JB[var(a)]Kq(Jb[var(a)]K)) (by the naturality of J−K)

= lamnf(bnf). (by the induction hypothesis for bnf) ◀

6 The category of sections of a displayed first-order model

The last tool that is needed for the proofs of relative induction principles is the category of
sections of an internal displayed higher-order model. This replaces the use of a displayed
inserter in our previous work [10].

Let M• be a global internal displayed first-order model over a first-order model M,
internally to some presheaf category Psh(C). We see M as a functor M : C → Modop

T , as
justified by Proposition 6. Write DispModT for the external category of a first-order model
of T with a displayed first-order model over it. There is a forgetful functor U : DispModT →
ModT . Since the notion of displayed first-order model is also essentially algebraic, we can
also view M• as a functor C → DispModop

T such that U ◦ M• = M. Similarly, writing
SectT for the category of a displayed first-order model of T with a section, a section of M•

can be identified with a functor J−K : C → Sectop
T such that V ◦ J−K = M•, where V is the

forgetful functor SectT → DispModT .

▶ Definition 20. The category Sectop
T [M•] of sections of M• is the pullback (in Cat)

Sectop
T [M•] Sectop

T

C DispModop
T

⌟
π0

J−K0

V

M•

By the universal property of the pullback, the data of a section of M• is equivalent to
the data of a section of π0 in Cat. The category Sectop

T [M•] is itself equipped with a section
J−K0 of π∗

0(M•), which is called the generic section of M•.
In order to prove an induction principle such as Theorem 18, we want to use the initiality

of C in some category to obtain section of π0. For example, when C is the category of
renamings, it suffices to equip Sectop

T [M•] with the structure of a renaming algebra that is
preserved by π0.

This typically involves lifting the terminal object and context extensions of C to Sectop
T [M•].

Conditions for the lifting of these finite limits are given in Appendix A.3; the initiality of the
syntax is needed to lift the terminal object.

References
1 Andreas Abel, Joakim Öhman, and Andrea Vezzosi. Decidability of conversion for type theory

in type theory. Proc. ACM Program. Lang., 2(POPL):23:1–23:29, 2018. doi:10.1145/3158111.

https://doi.org/10.1145/3158111

R. Bocquet and A. Kaposi and C. Sattler 17

2 Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical reconstruction of
a reduction free normalization proof. In David H. Pitt, David E. Rydeheard, and Peter T.
Johnstone, editors, Category Theory and Computer Science, 6th International Conference,
CTCS ’95, Cambridge, UK, August 7-11, 1995, Proceedings, volume 953 of Lecture Notes in
Computer Science, pages 182–199. Springer, 1995. doi:10.1007/3-540-60164-3_27.

3 Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Reduction-free normalisation
for a polymorphic system. In Proceedings, 11th Annual IEEE Symposium on Logic in Computer
Science, New Brunswick, New Jersey, USA, July 27-30, 1996, pages 98–106. IEEE Computer
Society, 1996. doi:10.1109/LICS.1996.561309.

4 Thorsten Altenkirch and Ambrus Kaposi. Normalisation by Evaluation for Dependent Types. In
Delia Kesner and Brigitte Pientka, editors, 1st International Conference on Formal Structures
for Computation and Deduction (FSCD 2016), volume 52 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 6:1–6:16, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2016/5972,
doi:10.4230/LIPIcs.FSCD.2016.6.

5 Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive
types. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’16, pages 18–29, New York, NY, USA, 2016. ACM. URL:
http://doi.acm.org/10.1145/2837614.2837638, doi:10.1145/2837614.2837638.

6 Thorsten Altenkirch, Ambrus Kaposi, and Michael Shulman. Towards higher observational
type theory. In Delia Kesner and Pierre-Marie Pédrot, editors, 28th International Conference
on Types for Proofs and Programs (TYPES 2022). University of Nantes, 2022. URL: https:
//types22.inria.fr/files/2022/06/TYPES_2022_paper_37.pdf.

7 Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler. Two-level type theory
and applications. CoRR, abs/1705.03307, 2019. URL: http://arxiv.org/abs/1705.03307,
arXiv:1705.03307.

8 Steve Awodey. Natural models of homotopy type theory. Mathematical Structures in Computer
Science, 28(2):241–286, 2018. doi:10.1017/S0960129516000268.

9 Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Proofs for free — parametricity
for dependent types. Journal of Functional Programming, 22(02):107–152, 2012. URL:
https://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=135303, doi:10.
1017/S0956796812000056.

10 Rafaël Bocquet, Ambrus Kaposi, and Christian Sattler. Relative induction principles for
type theories. CoRR, abs/2102.11649, 2021. URL: https://arxiv.org/abs/2102.11649,
arXiv:2102.11649.

11 Simon Castellan, Pierre Clairambault, and Peter Dybjer. Categories with families: Unityped,
simply typed, and dependently typed. CoRR, abs/1904.00827, 2019. URL: http://arxiv.
org/abs/1904.00827, arXiv:1904.00827.

12 Thierry Coquand. Presheaf model of type theory. Available at https://www.cse.chalmers.
se/~coquand/presheaf.pdf, 2013.

13 Thierry Coquand. Canonicity and normalization for dependent type theory. Theor. Comput.
Sci., 777:184–191, 2019. doi:10.1016/j.tcs.2019.01.015.

14 Thierry Coquand, Simon Huber, and Christian Sattler. Canonicity and homotopy canonicity
for cubical type theory, 2021. arXiv:1902.06572.

15 Thierry Coquand, Simon Huber, and Christian Sattler. Canonicity and homotopy canonicity
for cubical type theory. Log. Methods Comput. Sci., 18(1), 2022. doi:10.46298/lmcs-18(1:
28)2022.

16 Marcelo P. Fiore. Semantic analysis of normalisation by evaluation for typed lambda calculus.
In Proceedings of the 4th international ACM SIGPLAN conference on Principles and practice
of declarative programming, October 6-8, 2002, Pittsburgh, PA, USA (Affiliated with PLI
2002), pages 26–37. ACM, 2002. doi:10.1145/571157.571161.

https://doi.org/10.1007/3-540-60164-3_27
https://doi.org/10.1109/LICS.1996.561309
http://drops.dagstuhl.de/opus/volltexte/2016/5972
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
http://doi.acm.org/10.1145/2837614.2837638
https://doi.org/10.1145/2837614.2837638
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_37.pdf
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_37.pdf
http://arxiv.org/abs/1705.03307
http://arxiv.org/abs/1705.03307
https://doi.org/10.1017/S0960129516000268
https://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=135303
https://doi.org/10.1017/S0956796812000056
https://doi.org/10.1017/S0956796812000056
https://arxiv.org/abs/2102.11649
http://arxiv.org/abs/2102.11649
http://arxiv.org/abs/1904.00827
http://arxiv.org/abs/1904.00827
http://arxiv.org/abs/1904.00827
https://www.cse.chalmers.se/~coquand/presheaf.pdf
https://www.cse.chalmers.se/~coquand/presheaf.pdf
https://doi.org/10.1016/j.tcs.2019.01.015
http://arxiv.org/abs/1902.06572
https://doi.org/10.46298/lmcs-18(1:28)2022
https://doi.org/10.46298/lmcs-18(1:28)2022
https://doi.org/10.1145/571157.571161

18 For the Metatheory of Type Theory, Internal Sconing Is Enough

17 Marcelo P. Fiore and Ola Mahmoud. Second-order algebraic theories. CoRR, abs/1308.5409,
2013. URL: http://arxiv.org/abs/1308.5409, arXiv:1308.5409.

18 Daniel Gratzer. Normalization for multimodal type theory. In Proceedings of the
37th Annual ACM/IEEE Symposium on Logic in Computer Science, New York, NY,
USA, 2022. Association for Computing Machinery. URL: https://jozefg.github.
io/papers/2022-normalization-for-multimodal-type-theory-short.pdf, doi:10.1145/
3531130.3532398.

19 Daniel Gratzer and Jonathan Sterling. Syntactic categories for dependent type theory:
sketching and adequacy. CoRR, abs/2012.10783, 2020. URL: https://arxiv.org/abs/2012.
10783, arXiv:2012.10783.

20 Robert Harper. An equational logical framework for type theories. CoRR, abs/2106.01484,
2021. URL: https://arxiv.org/abs/2106.01484, arXiv:2106.01484.

21 Robert Harper, Furio Honsell, and Gordon D. Plotkin. A framework for defining logics. J.
ACM, 40(1):143–184, 1993. doi:10.1145/138027.138060.

22 Martin Hofmann. Syntax and semantics of dependent types. In Semantics and Logics of
Computation, pages 79–130. Cambridge University Press, 1997.

23 Martin Hofmann. Semantical analysis of higher-order abstract syntax. In 14th Annual IEEE
Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999, pages 204–213. IEEE
Computer Society, 1999. doi:10.1109/LICS.1999.782616.

24 Jason Z. S. Hu, Brigitte Pientka, and Ulrich Schöpp. A category theoretic view of contextual
types: from simple types to dependent types. CoRR, abs/2206.02831, 2022. arXiv:2206.02831,
doi:10.48550/arXiv.2206.02831.

25 Peter T Johnstone. Sketches of an elephant: a Topos theory compendium. Oxford logic guides.
Oxford Univ. Press, New York, NY, 2002. URL: https://cds.cern.ch/record/592033.

26 Achim Jung and Jerzy Tiuryn. A new characterization of lambda definability. In Marc
Bezem and Jan Friso Groote, editors, Typed Lambda Calculi and Applications, International
Conference on Typed Lambda Calculi and Applications, TLCA ’93, Utrecht, The Netherlands,
March 16-18, 1993, Proceedings, volume 664 of Lecture Notes in Computer Science, pages
245–257. Springer, 1993. doi:10.1007/BFb0037110.

27 Ambrus Kaposi. Type theory in a type theory with quotient inductive types. PhD thesis,
University of Nottingham, UK, 2017. URL: https://ethos.bl.uk/OrderDetails.do?uin=
uk.bl.ethos.713896.

28 Ambrus Kaposi, Simon Huber, and Christian Sattler. Gluing for type theory. In Herman
Geuvers, editor, 4th International Conference on Formal Structures for Computation and
Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany, volume 131 of LIPIcs, pages
25:1–25:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
FSCD.2019.25.

29 Krzysztof Kapulkin and Peter LeFanu Lumsdaine. The homotopy theory of type theories.
Advances in Mathematics, 337:1–38, 2018. URL: https://www.sciencedirect.com/science/
article/pii/S0001870818303062, doi:https://doi.org/10.1016/j.aim.2018.08.003.

30 András Kovács. Generalized universe hierarchies and first-class universe levels. In Florin
Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer Science
Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference), volume
216 of LIPIcs, pages 28:1–28:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.CSL.2022.28.

31 Frank Pfenning and Carsten Schürmann. System description: Twelf - A meta-logical framework
for deductive systems. In Harald Ganzinger, editor, Automated Deduction - CADE-16, 16th
International Conference on Automated Deduction, Trento, Italy, July 7-10, 1999, Proceedings,
volume 1632 of Lecture Notes in Computer Science, pages 202–206. Springer, 1999. doi:
10.1007/3-540-48660-7_14.

32 Loïc Pujet and Nicolas Tabareau. Impredicative Observational Equality. In POPL 2023 - 50th
ACM SIGPLAN Symposium on Principles of Programming Languages, volume 7 of Proceedings

http://arxiv.org/abs/1308.5409
http://arxiv.org/abs/1308.5409
https://jozefg.github.io/papers/2022-normalization-for-multimodal-type-theory-short.pdf
https://jozefg.github.io/papers/2022-normalization-for-multimodal-type-theory-short.pdf
https://doi.org/10.1145/3531130.3532398
https://doi.org/10.1145/3531130.3532398
https://arxiv.org/abs/2012.10783
https://arxiv.org/abs/2012.10783
http://arxiv.org/abs/2012.10783
https://arxiv.org/abs/2106.01484
http://arxiv.org/abs/2106.01484
https://doi.org/10.1145/138027.138060
https://doi.org/10.1109/LICS.1999.782616
http://arxiv.org/abs/2206.02831
https://doi.org/10.48550/arXiv.2206.02831
https://cds.cern.ch/record/592033
https://doi.org/10.1007/BFb0037110
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.713896
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.713896
https://doi.org/10.4230/LIPIcs.FSCD.2019.25
https://doi.org/10.4230/LIPIcs.FSCD.2019.25
https://www.sciencedirect.com/science/article/pii/S0001870818303062
https://www.sciencedirect.com/science/article/pii/S0001870818303062
https://doi.org/https://doi.org/10.1016/j.aim.2018.08.003
https://doi.org/10.4230/LIPIcs.CSL.2022.28
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/3-540-48660-7_14

R. Bocquet and A. Kaposi and C. Sattler 19

of the ACM on programming languages, page 74, Boston, United States, January 2023. URL:
https://hal.science/hal-03857705, doi:10.1145/3571739.

33 Michael Shulman. Towards a third-generation HOTT. Talk series at the Homotopy Type
Theory at CMU seminar, 2022.

34 Jonathan Sterling. First Steps in Synthetic Tait Computability: The Objective Metatheory of
Cubical Type Theory. PhD thesis, Carnegie Mellon University, 2021. Version 1.1, revised May
2022. doi:10.5281/zenodo.6990769.

35 Jonathan Sterling. Naïve logical relations in synthetic Tait computability. Unpublished
manuscript, June 2022.

36 Jonathan Sterling and Carlo Angiuli. Normalization for cubical type theory. CoRR,
abs/2101.11479, 2021. URL: https://arxiv.org/abs/2101.11479, arXiv:2101.11479.

37 Jonathan Sterling and Bas Spitters. Normalization by gluing for free λ-theories. CoRR,
abs/1809.08646, 2018. URL: http://arxiv.org/abs/1809.08646, arXiv:1809.08646.

38 Taichi Uemura. A general framework for the semantics of type theory. CoRR, abs/1904.04097,
2019. URL: http://arxiv.org/abs/1904.04097, arXiv:1904.04097.

39 Jonathan Weinberger, Benedikt Ahrens, Ulrik Buchholtz, and Paige North. Synthetic Tait
computability for simplicial type theory. In 28th International Conference on Types for
Proofs and Programs (TYPES 2022), 2022. URL: https://types22.inria.fr/files/2022/
06/TYPES_2022_paper_17.pdf.

A Technical results

A.1 Local representability
We recall the definition of the notion of locally representable dependent presheaf, which
encodes the notion of context extension.

▶ Definition 21. Let C be a category, X be a presheaf over C and Y be a dependent presheaf
over X. Then Y is said to be locally representable if for every element x : X(Γ), the
presheaf

Y|x : (C/Γ)op → Set,

Y|x(∆, ρ) ≜ Y (∆, x[ρ])

is representable. The representing object, consisting of an extended context and a projection
map, is written (Γ.Y [x], px) and the generic element is written qx : Y (Γ.Y [x], x[px]).

Given any object ∆ ∈ C, map ρ : ∆ → Γ and element y : Y (∆, x[ρ]), we write ⟨ρ, a⟩ for
the unique morphism such that px ◦ ⟨ρ, y⟩ = ρ and qx[⟨ρ, y⟩] = y. ⌟

A.2 Characterization of the telescopic contextualization
We define the contextual slices of a first-order model (which are called fibrant slices in [29]).

▶ Definition 22 (Contextual slice). Let C be a first-order model of T . Given Γ ∈ C, the
contextual slice (C � Γ) is the contextual first-order model given by:

Objects of (C � Γ) are telescopes (iterated context extensions) over Γ.
Morphisms from ∆1 to ∆2 are morphisms from Γ.∆1 to Γ.∆2 in (C/Γ).
The rest of the structure is inherited from C along the projection

(C � Γ) ∋ ∆ 7→ Γ.∆ ∈ C. ⌟

The contextual slice is functorial in both C and (contravariantly) Γ:

https://hal.science/hal-03857705
https://doi.org/10.1145/3571739
https://doi.org/10.5281/zenodo.6990769
https://arxiv.org/abs/2101.11479
http://arxiv.org/abs/2101.11479
http://arxiv.org/abs/1809.08646
http://arxiv.org/abs/1809.08646
http://arxiv.org/abs/1904.04097
http://arxiv.org/abs/1904.04097
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_17.pdf
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_17.pdf

20 For the Metatheory of Type Theory, Internal Sconing Is Enough

For any f : ∆ → Γ, there is a pullback morphism f∗ : (C � Γ) → (C � ∆). Its actions on
objects, substitutions, types and terms are all given by substitution along f .
For any F : C → D, there is a morphism (F � Γ) : (C � Γ) → (D � F (Γ)). Its actions
on objects, substitutions, types and terms are given by the actions of F on telescopes,
substitutions, types and terms.
The following diagrams commute (for any F : C → D and f : ∆ → Γ):

(C � Γ) (D � F (Γ))

(C � ∆) (D � F (∆)) .

(F �Γ)

f∗ f∗

(F �∆)

For any f : Θ → Γ and object ∆ of (C � Γ), we have (f∗ � ∆) = ⟨p∗
∆(f), q∆⟩∗ as a

morphism from (C � Γ.∆) to (C � Θ.f∗(∆)). Here
〈
f ◦ pf∗(∆), qf∗(∆)

〉
is a morphism

from Θ.f∗(∆) to Γ.∆.

▶ Lemma 23. Let C be a first-order model of T . Then the telescopic contextualization TeleC
corresponds the contextual slice functor

(C � −) : C → Modop
T . ⌟

Proof. Immediate from unfolding the definitions. ◀

▶ Corollary 24. The externalization 1∗
C(TeleC) is the contextual core of C.

Proof. By Lemma 23, 1∗
C(TeleC) is the contextual slice (C �1C), the contextual core of C. ◀

▶ Lemma 25. Let C be a contextual first-order model and A : C.Ty(1C) be a closed type.
Then the contextual slice (C � A) satisfies the following universal property: for every model
E, morphism F : C → E and element a : E .Tm(F (A)), there is a unique morphism F̃ :
(C � 1C .A) → E such that F̃ ◦ p∗

A = F and F̃ (qA) = a.
In other words, (C � 1C .A) is the free extension of C by a generic element qA of type A.

Proof. The contextuality of C implies that C ∼= (C � 1C) and thus we have a weakening
morphism p∗

A : C → (C � 1C .A). We write A′ : C.Ty(1C .A) for the weakening of A, i.e.
A′ = p∗

A(A).
Take a morphism F : C → E and an element a : E .Tm(F (A)).
Let F̃ : (C � 1C .A) → E be any morphism such that F̃ ◦ p∗

A = F and F̃ (qA) = a. Since
(C � 1C .A) is contextual, F̃ factors through (F̃ � (1C .A)) : (C � 1C .A) → (E � 1E).

The following diagram commutes:

(C � 1C .A) (E � 1E)

(C � 1C .A.A′) (E � 1E .F̃ (A′))

(C � 1C .A) (E � 1E) .

p∗
A′

(F̃ �(1C .A))

p∗
F̃ (A′)

(F̃ �(1C .A).A′)

⟨qA⟩∗ ⟨F̃ (qA)⟩∗

(F̃ �(1C .A))

By assumptions, we have F̃ (A′) = F (A) and F̃ (qA) = a. Thus, F̃ factors as the
composition

(C � 1C .A)
p∗

A′−−→ (C � 1C .A.A′) (F̃ �(1C .A).A′)−−−−−−−−−→ (E � 1E .F (A)) ⟨a⟩∗

−−−→ (E � 1E) −→ E .

R. Bocquet and A. Kaposi and C. Sattler 21

By functoriality of (− � 1C .A), we have (F � 1C .A) = (F̃ � (1C .A).A′) ◦ (p∗
A � 1C .A). We

can simplify (p∗
A � 1C .A) = ⟨pA ◦ pA′ , qA′⟩∗. Finally, we see that ⟨qA⟩∗ ◦ ⟨pA ◦ pA′ , qA′⟩∗ =

id = ⟨qA⟩∗ ◦ p∗
A′ .

Thus, (F̃ � (1C .A).A′) ◦ p∗
A′ = F∗(1C .A) and we can simplify the factorization to

(C � 1C .A) F∗(1C .A)−−−−−→ (E � 1E .F (A)) ⟨a⟩∗

−−−→ (E � 1E) −→ E .

As this composition does not depend on F̃ and satisfies the required equations, this shows
the existence and uniqueness of F̃ . ◀

▶ Lemma 26. Given any Γ ∈ C and A : C.Ty(Γ), then (C � Γ.A) satisfies the following
universal property: for every model E , morphism F : (C�Γ) → E and element a : E .Tm(F (A)),
there is a unique morphism F̃ : (C � Γ.A) → E such that F̃ ◦ p∗

A = F and F̃ (qA) = a.
In other words, (C � Γ.A) is the free extension of (C � Γ) by a generic element qA of type

A.

Proof. We have (C �Γ.A) ∼= ((C �Γ)�1(C�Γ).A). Then the result follows from Lemma 25. ◀

A.3 Properties of the category of sections
We now prove the properties of the category of sections of a displayed first-order model.
Fix a global internal first-order model M : C → Modop

T and a displayed first-order model
M• : C → DispModop

T over M.
We prove conditions that relate the existence of some finite limits in Sectop

T [M•] to the
universal properties of the first-order models M(Γ) for Γ ∈ C.

We have defined the category Sectop
T [M•] of sections of M• as the following pullback

Sectop
T [M•] Sectop

T

C DispModelop
T .

⌟
π0

J−K0

M•

Unfolding the definition, an object of Sectop
T [M•] is a pair (Γ, J−KΓ) where Γ ∈ C and

J−KΓ is a section of M•(Γ) over M(Γ). A morphism of from (Γ, J−KΓ) to (∆, J−K∆) is a
morphism f : C(Γ, ∆) such that the outer square commutes in the following diagram:

M•(∆) M•(Γ)

M(∆) M(Γ) .

M•(f)

M(f)
J−KΓ J−K∆

▶ Lemma 27. If C has a terminal object 1C and M(1C) is the initial model of T , then
Sectop

M• has a terminal object that is strictly preserved by π0.

Proof. Since M(1C) is initial, we obtain a section J−K1C
of M•(1C). We now prove that

(1C , J−K1C
) is terminal in Sectop

M• . Let (Γ, J−KΓ) be any object of Sectop
M• . A morphism from

(Γ, J−KΓ) to (1C , J−K1C
) is a morphism f : C(Γ, 1C) such that the following square commutes:

M•(1C) M•(Γ)

M(1C) M(Γ) .

M•(f)

J−K1C

M(f)

J−KΓ

22 For the Metatheory of Type Theory, Internal Sconing Is Enough

Since 1C is terminal, there is only one morphism f : C(Γ, 1C), and the corresponding
square commutes by initiality of M(1C). ◀

▶ Definition 28. Let X be a presheaf over C and Y be a locally representable dependent
presheaf over X. Assume given the data of global elements

fX : X → M.Ty(1M),
fY : (x : X) → Y (x) → M.Tm(1M, fX(x))

of Psh(C).
We say that fY is compatible with M if for every element x : X(Γ), the external first-order

model M(Γ.Y (x)) satisfies the following universal property: for every first-order model E,
morphism E : M(Γ) → E and element z : E .Tm(1E , E(fX(x))), there is a unique morphism
Ẽ : M(Γ.Y (x)) → E such that E = Ẽ ◦ M(px) and z = Ẽ(fY (x, qx)).

In other words, M(Γ.Y (x)) should be the free extension of M(Γ) by an element fY (x, qx)
of type fX(x), the extension being witnessed by the morphism M(px) : M(Γ) → M(Γ.Y (x)).

⌟

▶ Lemma 29. Let F : C → D be a CwF morphism.
Then the condition of Definition 28 is satisfied, with M = F ∗(TeleD), X and Y being

respectively the types and terms of C, and fX and fY being the actions of F on types and
terms.

Proof. By Definition 22, M correspond to the functor

C ∋ Γ 7→ (D � F (Γ)) ∈ Modop
T .

Thus, we need to check that given any Γ ∈ C and A : C.Ty(Γ), the model (D � F (Γ.A))
is the free extension of (D � F (Γ)) by a generic element of type F (A). Since F preserves
extensions, F (Γ.A) ∼= F (Γ).F (A), and thus the result follows by Lemma 26. ◀

▶ Lemma 30. Let X be a presheaf over C and Y be a locally representable presheaf family
over X equipped with operations fX and fY satisfying the condition of Definition 28. Finally,
assume that for every (Γ, J−KΓ) ∈ Sectop

M• , ∆ ∈ C, γ : C(∆, Γ), x : X(Γ) and y : Y (∆, x[γ])
we have

f•
Y (x, y) : M•(∆).Tm•(1•, M•(γ)(JfX(x)KΓ), fY (x[γ], y)),

naturally in (Γ, J−KΓ) and ∆.
Consider the presheaf X0 ≜ π∗

0(X) over Sectop
M• and the dependent presheaf Y0 over X0

specified on objects by:

Y0((Γ, J−KΓ), x) ≜ {y : Y (Γ, x) | JfY (x, y)KΓ = f•
Y (x, y)}.

Then the presheaf family Y0 is locally representable and the action induced by the first
projections Y0((Γ, J−KΓ), x) → Y (Γ, x) strictly preserve context extensions.

Proof. Let (Γ, J−KΓ) be an object of Sectop
M• and x : X(Γ) be an element of X0 at this

object. We have to prove that the presheaf Y0|x over (Sectop
M•/(Γ, J−KΓ)) is representable.

Consider the diagram:

M•(Γ) M•(Γ.Y (x))

M(Γ) M(Γ.Y (x))

M•(px)

M(px)

J−KΓ J−KΓ.Y (x)

R. Bocquet and A. Kaposi and C. Sattler 23

We construct a section J−KΓ.Y (x) of M•(Γ.Y (x)) over M(Γ.Y (x)). Using the universal
property of M(Γ.Y (x)), we define J−KΓ.Y (x) as the unique extension of M•(px) ◦ J−KΓ that
sends fY (x, qx) to f•

Y (x, qx).
We can check that px lifts to a morphism px : (Γ.Y (x), J−KΓ.Y (x)) → (Γ, J−KΓ) in Sectop

M• .
We now show that ((Γ.Y (x), J−KΓ.Y (x)), px) represents the functor Y0|x. Let (∆, J−K∆)

be another object of Sectop
M• , with a morphism ρ : (∆, J−K∆) → (Γ, J−KΓ) and an element

y : Y0|x((∆, J−K∆), ρ). Unfolding the definitions, we have y : Y (∆, x[ρ]) with JfY (x[ρ], y)K∆ =
f•

Y (x[ρ], y).
The local representability of Y implies that there is a unique morphism ρ̃ : ∆ → Γ.Y (x)

in C such that px ◦ ρ̃ = ρ and qx[ρ̃] = y. We have to show that this morphism lifts to Sectop
M• ,

i.e. that the following square commutes:

M•(Γ.Y (x)) M•(∆)

M(Γ.Y (x)) M(∆)

M•(ρ̃)

M(ρ̃)

J−KΓ.Y (x) J−K∆

By the universal property of M(Γ.Y (x)), it suffices to show that fY (x, qx) is mapped to
the same element by the compositions M•(ρ̃) ◦ J−KΓ.Y (x) and J−K∆ ◦ M(ρ̃). We compute
M•(ρ̃)(JfY (x, qx)KΓ.Y (x)) = M•(ρ̃)(f•

Y (x, qx)) = f•
Y (x[ρ], y) and JM(ρ̃)(fY (x, qx))K∆ =

JfY (x[ρ], y)K∆ = f•
Y (x[ρ], y).

This completes the proof that ((Γ.Y (x), J−KΓ.Y (x)), px) represents the functor Y0|x.
We have proven that Y0|x is representable for every x, i.e. that Y0 is locally representable.

The first projections Y0((Γ, J−KΓ), x) → Y (Γ, x) strictly preserve the chosen representing
objects. ◀

A.4 Proofs of relative induction principles
Proof of Theorem 18. We consider the category Sectop

T [SconeS•] of sections of SconeS• .
By Lemma 27, the category Sectop

T [SconeS•] has a terminal object. We equip it with the
structure of a higher-order renaming algebra (Var0, var0) over (F ◦π0) : Sectop

T [SconeS•] → S
as follows:

Var0((Γ, J−KΓ), A) ≜ {a : Var(Γ, A) | Jvar(Γ, a)KΓ = var•(Γ, JAKΓ, a)},

var0((Γ, J−KΓ), A, a) ≜ var(Γ, a).

By Lemma 29, the action of F : R → S on variables is compatible with SF . By Lemma 30,
the presheaf family Var0 is locally representable and the first projections Var0((Γ, J−KΓ), A) →
Var(Γ, A) strictly preserve context extensions. By initiality of R among first-order renaming
algebras, we obtain a section H of π0 in the category of first-order renaming algebras.

We thus have a section J−K ≜ H∗(J−K0) of SconeS• in Psh(R). The action of H on
variables proves that it satisfies the equality JvarA(x)K = var•(JAK, x). ◀

B Example: Syntactic parametricity

In this appendix, we show how our constructions can be combined to obtain a syntactic
parametricity translation for a dependent type theory with universes. Syntactic parametricity
[9, 5] refers to the situation where the result of the translation itself consists of types and
terms from the syntax, as opposed to metatheoretic entities such as sets or presheaves.

24 For the Metatheory of Type Theory, Internal Sconing Is Enough

Syntactic parametricity is an interesting application of our methods because the motives
and methods of the induction are given over some category (here the syntax), but the result
of the induction is only obtained over some other category (here the terminal category,
selecting the empty context). We construct a displayed higher-order model and its Scone-
contextualization in presheaves over the syntax, but we only look at the section of its
externalization, and never obtain a section of the full Scone-contextualization.

Let T be a dependent type theory with a hierarchy of Coquand universes [12, 30], such
that types at every level are closed under Π-types. This means that a higher-order model of
T consists of the following data, where every line quantifies over a universe level i ∈ N:

Tyi : Set,
Tmi : Tyi → Set,
Ui : Tyi+1,

Eli : Tm(Ui) ∼= Tyi,

Lifti : Tyi → Tyi+1,

lifti : Tmi(A) ∼= Tmi+1(Lifti(A)),
Π : (A : Tyi) → (Tmi(A) → Tyi) → Tyi,

app : Tmi(Π(A, B)) ∼= ((a : Tmi(A)) → Tmi(B(a))).

We write S for the syntax of T , that is the initial first-order model of T ; the constructions
of the paper generalize to this theory.

We construct, internally to Psh(S), a displayed higher-order model S• over TeleS:
A displayed type over A : S.Tyi is a type family

A• : S.Tm(A) → S.Tyi.

A displayed term of type A• over a : S.Tm(A) is an element

a• : S.Tm(A•(a)).

The displayed universe U•
i is defined as

U•
i ≜ λA 7→ Π(El(A), Ui),

so that we have an isomorphism U•
i (A) ∼= Ty•

i (Eli(A)).
The displayed lifting operation Lift•

i is defined by

Lift•
i (A•) ≜ λa 7→ Lifti(A•(lift−1

i (a)));

we have an isomorphism Tm•
i (A•, a) ∼= Tm•

i+1(Lift•
i (A•), lifti(a)).

The displayed Π-type Π•(A•, B•) is defined as

Π•(A•, B•) ≜ λf 7→ (Π(A, λa 7→ Π(A•(a), λa• 7→ B•(a•, app(f, a)))).

By the induction principle of S relative to 1S : 1Cat → S, we have a section J−K of
1∗

S(SconeS•). Let f be any closed term of S of type (A : U0) → A → A.
Then JfK is a closed term of S of type J(A : U0) → A → AK(f) witnessing the fact that f

satisfies parametricity. Using the computation rules of J−K, we can compute

J(A : U0) → A → AK(f)
= (A : U0)(A• : A → U0) → JλA 7→ A → AK(A•, f(A))
= (A : U0)(A• : A → U0)(a : A)(a• : A•(A)) → Jλ(A, a) 7→ AK((A•, a•), f(A, a))
= (A : U0)(A• : A → U0)(a : A)(a• : A•(A)) → A•(f(A, a)).

R. Bocquet and A. Kaposi and C. Sattler 25

C Induction principles for cubical type theories

In this section we state and prove relative induction principles for a minimal cubical type
theory. It should be possible to use these induction principles (extended to larger cubical
type theories) in order to express in our framework the known proofs of strict canonicity,
homotopy canonicity [15] and normalization [36] for cubical type theory.

▶ Definition 31. A higher-order cubical algebra is a set I with two points 0, 1 : I. ⌟

▶ Definition 32. A first-order cubical algebra is a category C with a terminal object 1C ,
along with a locally representable presheaf I with two global elements 0, 1. ⌟

The cube category □ is the initial first-order cubical algebra.
We consider a minimal cubical type theory TCTT with only Π-types and path types. A

higher-order model of TCTT consists of the following data:

I : Set,
0, 1 : I,
Ty : Set,
Tm : Ty → Set,
Π : (A : Ty) → (Tm(A) → Ty) → Ty,

app : Tm(Π(A, B)) ∼= ((a : Tm(A)) → Tm(B(a))),
Path : (A : I → Ty) → Tm(A(0)) → Tm(A(1)) → Ty,

papp : Tm(Path(A, x, y)) → (i : I) → Tm(A(i)),
(p : Tm(Path(A, x, y))) → papp(p, 0) = x,

(p : Tm(Path(A, x, y))) → papp(p, 1) = y,

plam : (A : I → Ty) → (p : (i : I) → Tm(A(i))) → Tm(Path(A, p(0), p(1))).

We write SCTT for the initial first-order model of TCTT.
By the universal property of □, the cubical algebra (SCTT.I, SCTT.0, SCTT.1) specifies a

morphism F : □ → SCTT of first-order cubical algebras. We pose SF ≜ F ∗(TeleSCTT). We
write int : □.I → SF .I for the action of F on elements of the interval in Psh(□).

▶ Theorem 33 (Induction principle relative to F : □ → SCTT). Let S• be a displayed
higher-order model of CTT over SF , and assume given the additional data of a function

int• : (i : □.I) → I•(int(i))

such that

int•(0) = 0•,

int•(1) = 1•.

Then there exists a section J−K of SconeS• . It satisfies the additional equality

Jint(i)K = int•(i).

Proof. We consider the category Sectop
T [SconeS•] of sections of SconeS• .

26 For the Metatheory of Type Theory, Internal Sconing Is Enough

By Lemma 27, the category Sectop
T [SconeS•] has a terminal object. We equip it with a

higher-order cubical algebra (I0, 00, 10) as follows:

I0(Γ, J−KΓ) ≜ {i : □.I(Γ) | Jint(i)KΓ = int•(Γ, i)},

00 ≜ □.0,

10 ≜ □.1.

The required equalities Jint(□.0)KΓ = int•(Γ,□.0) and Jint(□.1)KΓ = int•(Γ,□.1) follow
from the assumptions int•(□.0) = 0• and int•(□.1) = 1•.

By Lemma 29, the action of F : □ → S on the elements of □.I is compatible with SF .
By Lemma 30, the presheaf I0 is locally representable and the first projections I0(Γ, J−KΓ) →
□.I(Γ) strictly preserve context extensions. By initiality of □ among first-order cubical
algebras, we obtain a section H of π0 in the category of first-order cubical algebras.

We thus have a section J−K ≜ H∗(J−K0) of SconeS• in Psh(□). The action of H on
elements of the interval proves that J−K satisfies the equality Jint(i)K = int•(i). ◀

▶ Definition 34. Let C be a first-order model of TCTT. A higher-order cubical renaming
algebra C over C consists of a higher-order renaming algebra (C.Var,C.var) over C, a
higher-order cubical algebra (C.I,C.0,C.1), and an operation

C.int : C.I → C.I(1C)

such that C.int(0) = 0 and C.int(1) = 1. ⌟

▶ Definition 35. Let D be a first-order model of TCTT. A first-order cubical renaming
algebra over D is a category C with a terminal object along with a functor F : C → D that
preserves the terminal object and with the structure of a global higher-order cubical renaming
algebra C over F ∗(TeleD) such that both C.I and C.Var are locally representable and both
C.int and C.var strictly preserve context extensions. ⌟

The category A□ of cubical renamings (or category of atomic cubical contexts and
substitutions) is the initial first-order cubical renaming algebra over SCTT. We write G for
the functor G : A□ → SCTT, and pose SG ≜ G∗(TeleSCTT).

▶ Theorem 36 (Induction principle relative to F : A□ → SCTT). Let S• be a displayed
higher-order model of CTT over SG, and assume given the additional data of functions

var• : ∀A (A• : Ty•(A)) (a : Var(A)) → Tm•(A•, var(a)),
int• : (i : □.I) → I•(int(i))

such that

int•(0) = 0•,

int•(1) = 1•.

Then there exists a section J−K of SconeS• . It satisfies the additional equalities

JvarA(a)K = var•(JAK, a),
Jint(i)K = int•(i).

Proof. By the same methods as the proofs of Theorem 18 and Theorem 33. ◀

	1 Introduction
	2 First-order and higher-order models
	2.1 Definitions
	2.2 Contextualization
	2.3 Telescopic contextualization
	2.4 Internal first-order models
	2.5 Restriction and externalization

	3 Displayed higher-order models
	3.1 Motives and methods
	3.2 Displayed contextualization
	3.3 Sections of a displayed higher-order model

	4 Example: canonicity proof
	5 Example: normalization proof
	5.1 The category of renamings
	5.2 Relative induction principle
	5.3 Normal forms
	5.4 Normalization displayed model
	5.5 Stability of normalization and uniqueness of normal forms

	6 The category of sections of a displayed first-order model
	A Technical results
	A.1 Local representability
	A.2 Characterization of the telescopic contextualization
	A.3 Properties of the category of sections
	A.4 Proofs of relative induction principles

	B Example: Syntactic parametricity
	C Induction principles for cubical type theories

