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ABSTRACT. Voevodsky’s univalence axiom is often motivated as a realization of the equivalence principle; the idea
that equivalent mathematical structures satisfy the same properties. Indeed, in Homotopy Type Theory, properties
and structures can be transported over type equivalences. However, we may wish to explain the equivalence
principle without relying on the univalence axiom. For example, all type formers preserve equivalences in most
type theories; thus it should be possible to transport structures over type equivalences even in non-univalent type
theories.

We define external univalence, a property of type theories (and more general second-order generalized algebraic
theories) that captures the preservation of equivalences (or other homotopy relations). This property is defined
syntactically, as the existence of identity types on the (syntactically defined) coclassifying (Σ, Πrep)-CwF (also
called generic model or walking model) of the theory. Semantically, it corresponds to the existence of some left
semi-model structure on the category of models of the theory. We give syntactic conditions that can be used to
check that a theory satisfies external univalence. We prove external univalence for some theories, such as the
first-order generalized algebraic theory of categories, and dependent type theory with any standard choice of type
formers and axioms, including identity types, Σ-types, Π-types, universes à la Tarski, the univalence axiom, the
Uniqueness of Identity Proofs axiom, etc.

1. INTRODUCTION

The principle of equivalence, also called principle of isomorphism, equivalence-invariance, etc., is the
idea that all constructions (in some language or theory) should respect equivalences (for some notion of
equivalence associated to the theory). Structures and properties should be transportable over equivalences.
Voevodsky’s univalence axiom can be seen as an internalization of this principle in the language of type
theory. However, univalence is a non-conservative extension of type theory, and incompatible with other
useful type theoretic principles, such as Uniqueness of Identity Proofs (UIP). We also wish to achieve
transport over equivalent structures in non-univalent type theories.

In some ways, univalence is similar to parametricity. Parametricity captures the preservation of n-ary
relations, whereas univalence is related to the preservation of equivalences (which can be seen as binary
relations that are functional in both directions). While some theories satisfy internal parametricity, many
others only satisfy parametricity externally. External parametricity is a provable metatheoretic property of
these theories. In this paper, we introduce external univalence a metatheoretic property of theories which
captures the preservation of equivalences (or other homotopy relations).

The name “external univalence” corresponds to two ideas. First, as already mentioned, the link between
external and internal univalence is somewhat similar to the relationship between external and internal
parametricity. Secondly, external univalence is directly related to the other established use of the word
“univalence”, as found in the notion of univalent category (Ahrens, Kapulkin, and Shulman 2015). Indeed, a
theory will satisfy external univalence when its generic model is univalent, for some suitable definition of
univalent model of the given theory.

The original motivation for this paper is the author’s work (Bocquet 2020) on the conservativity of
extensions of type theories by additional definitional equalities. These conservativity results are proven by
replacing definitional equalities by transports over equivalences and identifications (elements of the identity
type). It is then important to know that equivalences and identifications are preserved by everything in the
theory.

We formulate external univalence for any second-order generalized algebraic theory (SOGAT) equipped
with the data of homotopy relations on every sort. SOGATs correspond to a class of type theories studied
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by Uemura (Uemura 2019; Uemura 2021). The syntax and semantics of most type theories (including type
theories with unusual contextual structure, such as cubical type theories and two-level type theories) can
all be described using SOGATs. All first-order generalized algebraic theories (GATs, such as the theory of
categories) can also be seen as SOGATs. The homotopy relations specify a notion of weak equality on every
sort of the theory.

The GAT of categories has three sorts: objects, morphisms and equality between morphisms. The
homotopy relation on objects is given by isomorphisms, the homotopy relation on morphisms is given by
equality of morphisms, and the homotopy relation on equality of morphisms is trivial. Type theories are
usually SOGATs with two sorts: types and terms. The homotopy relations on types and terms can be given
by respectively type equivalences and identifications.

We study properties of a SOGAT T by focusing on its coclassifying (Σ, Πrep)-CwF (which contains the
generic model or walking model of T ). The coclassifying (Σ, Πrep)-CwF is also written T and is often identified
with the theory. The underlying category of T is equivalent to the category of finitely generated models of T .
However, we use a more syntactic definition of T , as the initial model of some two-level type theory. The
syntax (i.e. the initial model) of T embeds faithfully into its coclassifying (Σ, Πrep)-CwF; any property of T
has direct consequences on the syntax of the theory. For many theories, the initial model is however too
trivial to be interesting; for example, the initial category is empty.

In this setting, we say that a SOGAT T satisfies external univalence if its coclassifying (Σ, Πrep)-CwF T
can be equipped with (weakly stable and weakly computational) identity types that are compatible with the
specified homotopy relations. The elimination principle of these identity types then gives transport over
elements that are related by the homotopy relations.

More semantically, we will show in a future article that external univalence is equivalent to the existence
of a left semi-model structure on the category of models of T , where the classes of cofibrations, fibrations
and weak equivalences are determined by the theory T and its homotopy relations. In the case of the theory
of categories, this semi-model structure is the canonical (or “folk”) model structure on Cat, while in the
case of type theories with identity types, this semi-model structure is the one constructed by Kapulkin and
Lumsdaine (2018).

Our main theorem states that external univalence can be proven for a theory by checking some syntactic
conditions. Checking these conditions requires providing witnesses of preservation of the homotopy
relations by every operation of the theory, together with 1- and 2- dimensional cubical composition and
filling operations for the homotopy relations. In the restricted case of theories without equations (e.g. type
theories without computation rules), these conditions are actually necessary conditions.

Using this theorem, we show external univalence for:

• the theory of categories, as a minimal example application of the method;
• type theory with identity types and any standard choice of additional type-theoretic structures, such

as Π-types, Σ-types, universes à la Tarski (without a coding function), booleans, univalence, UIP, etc.

Depending on the precise algebraic definition of universes, it is not always possible to prove external
univalence in the absence of (internal) univalence. A universe comes with a decoding function El, that sends
terms of the universe type to types. A coding function is an inverse of the decoding function El, universes
with a coding function are also called Coquand universes (Coquand 2013; Coquand 2019). In the absence of
a coding function, it is always possible to prove external univalence. Tabareau, Tanter, and Sozeau (2021)
give some counter-examples to the preservation of equivalences in the absence of univalence, but they all
rely on the use of universes à la Russell, which identify types with terms of the universe.

It should be possible to use our methods to show that other theories (such as the first-order generalized
algebraic theory of 2-categories, cubical type theories with or without Glue-types, etc.) also satisfy external
univalence.

Example: the theory of categories. We look in more details at external univalence in the setting of the
generalized algebraic theory TCat of categories, which is perhaps the simplest theory with non-trivial
homotopical content. Since TCat is a first-order generalized algebraic theory, its coclassifying (Σ, Πrep)-CwF
TCat is in fact a coclassifying Σ-CwF. It admits multiple equivalent definitions:
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• TCat is the initial category with families equipped with 1-types, Σ-types and with an “internal
category”;
• TCat is the initial model of a type theory with:

– A type (ob type) of objects;
– A dependent type ((x, y : ob) ⊢ hom(x, y) type) of morphisms;
– A dependent type ((x, y : ob) ( f , g : hom(x, y)) ⊢ eqhom( f , g) type) of equalities between

morphisms;
– Such that types are closed under 1-types and Σ-types;
– A dependent term (x : ob) ⊢ id(x) : hom(x, x);
– A dependent term ( f : hom(x, y)) (g : hom(y, z)) ⊢ comp( f , g) : hom(x, z);
– Such that the categorical laws are satisfied:

comp( f , id) = f ,

comp(id, f ) = f ,

comp(comp( f , g), h) = comp( f , comp(g, h));

– And such that the type eqhom( f , g) is propositional, and inhabited if and only if f = g;
The types and terms of this initial model are respectively the sorts and elements of the theory of
categories.
• The objects of TCat are the categories that are finitely generated by a finite set of objects, a finite collec-

tion of morphisms between these objects, and a finite collection of equalities between compositions
of these morphisms. The category TCat is a full subcategory of the 1-category Cat.

The types of TCat over a finitely generated category Γ are the “diagram shapes” over Γ; extensions
of Γ by a finite collection of new generating objects, morphisms and equalities. Equivalently, these
are the functors into Γ that have a finitely generated domain and are injective-on-objects (i.e. that are
cofibrations in the canonical model structure on Cat).

The terms of a diagram shape A are the actual diagrams of that shape in the category that is
finitely generated by Γ.

For example, the context (that can also be seen as a closed record type)

Sect = (x : ob, y : ob, r : hom(x, y), s : hom(y, x), p : eqhom(comp(s, r), id(y)))

is an object of TCat. The corresponding finitely generated category is the “walking section”

y x y .s

id(y)

r

We claim that TCat satisfies external univalence, meaning that the coclassifying Σ-CwF TCat can be
equipped with identity types. For any type A, i.e. a diagram shape over Γ, the dependent type IdA(x, y) is
the diagram shape of isomorphisms between the two copies (x and y) of the diagram A.

For example, the diagram shape IdSect((x0, y0, r0, s0, p0), (x1, y1, r1, s1, p1)) consists of the vertical isomor-
phisms in the following commutative diagram.

y0 x0 y0

y1 x1 y1 .

s0

id(y0)

∼=y2

r0

∼=x2 ∼=y2
s1

id(y1)

r1

The elimination principle of the identity types then tells us that we can transport any diagram extension
along such diagram isomorphisms. For instance, if we know that s0 and r0 are actually inverses in the above
setting, we can transport this fact over the diagram isomorphism to obtain that s1 and r1 are also inverses.
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Concretely, we can form a dependent type P over Sect, with P(x, y, r, s) = eqhom(comp(r, s), id(x)). If we
have any term of type P(x0, y0, r0, s0, p0), we obtain an element of type P(x1, y1, r1, s1, p1) by transport.

Note that we do not include any type of “equality between objects”. Indeed, equalities between objects
cannot be transported over diagram isomorphisms.

Example: Dependent type theories. We also describe what external univalence entails for a dependent
type theory T with identity types, universes à la Tarski and any choice of standard type formers (Π-types,
Σ-types, inductive types, etc.).

The coclassifying (Σ, Πrep)-CwF of T can be described as the initial model of a two-level type theory with:
• For every universe level i, we have:

– An outer type (ityi type) of inner types of level i.
– A dependent outer type (A : ityi ⊢ itmi(A) type) of inner terms.
– An inner type (U i : ityi+1) for the universe of i-small inner types and a dependent inner type
(A : itmi+1(U i) ⊢ El(A) : iTyi) for its decoding function.

• The inner types and terms are closed under the operations of the dependent type theory T , including
identity types iId, irefl, etc.
• The outer types are closed under 1- and Σ-types.
• The outer types are closed under Π-types with arities in inner terms. This means that we have a type

forming operation

A : ityi a : itmi(A) ⊢ B(a) type
Π(A, B) type

such that terms of type Π(A, B) correspond bijectively to dependent terms (a : itmi(A) ⊢ b : B(a)).
The underlying category of T is equivalent to the category of all finitely generated contextual models of T .

The model T does not coincide with the initial model 0T of T ; but there is a faithful embedding 0T → T ,
so that anything constructed in T is also valid in the syntax 0T .

In that setting, external univalence for T says that the (Σ, Πrep)-CwF T is equipped with (weakly stable)
identity types with Idityi (A, B) ≃ iEquiv(A, B) and Iditmi(A)(x, y) ≃ itmi(iIdA(x, y)), where iEquiv(A, B) is
the outer type of inner equivalences between the inner types A and B.

A closed dependent inner type (A : ityi ⊢ P(A) : ityi) in the (Σ, Πrep)-CwF T is exactly a type expression
that depends on a type variable A. If T satisfies external univalence, we know that any such P perserves
equivalences. Indeed, P has an action on paths:

(A, B : ityi), E : Idityi (A, B) ⊢ ap(P, E) : Idityi (P(A), P(B)).

By external univalence, this is equivalent to an action of P on equivalences:

(A, B : ityi), E : iEquiv(A, B) ⊢ ap(P, E) : iEquiv(P(A), P(B)).

Furthermore, this action of P on equivalences preserves composition of equivalences and the whole
∞-groupoid structure of types.

As an example, we can show how to transport the commutativity of addition from a type Nun of unary
natural numbers to a type Nbin of binary natural numbers. We consider the following dependent type:

P : (N : ity0)× (plus : itm(N)→ itm(N)→ itm(N))→ ity0,

P(N, plus) ≜ ∀n m→ iIdN(plus(n, m), plus(m, n)).

We have an identification E between (Nun,+un) and (Nbin,+bin) in the outer type (N : ity0) × (plus :
itm(N)→ itm(N)→ itm(N)). By external univalence and function extensionality in T , this identification
consists of an equivalence between Nun and Nbin along with a proof that it is compatible with +un and
+bin. We can then use the action on paths of P to obtain an identification ap(P, E) between P(Nun,+un) and
P(Nbin,+bin). By external univalence, we can also see ap(P, E) as an equivalence between P(Nun,+un) and
P(Nbin,+bin). Now given any term of type P(Nun,+un), we can apply the equivalence to obtain a term of
type P(Nbin,+bin), i.e. a proof of commutativity for the binary natural numbers.
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Note that if T has Coquand universes instead, given by inverses (A : ityi ⊢ c(A) : itmi+1(U i)) of the
coding functions El, then external univalence implies internal univalence. Indeed the action of c on paths is

(A, B : ityi), E : Idityi (A, B) ⊢ ap(c, E) : Iditmi+1(U i)
(c(A), c(B)).

By external univalence, this is equivalent to

(A, B : ityi), E : iEquiv(A, B) ⊢ ap(c, E) : itmi+1(iIdU i (c(A), c(B))),

i.e. to the fact that any equivalence can be turned into an identification between elements of the universe U i.

Related work.

Relational parametricity and the Identity Extension Lemma. Reynolds’ relational parametricity (Reynolds 1983)
provides an interpretation of the types of System F as binary relations for any given mapping of the type
variables to relations. A crucial property of Reynolds’ model is the Identity Extension Lemma, which states
that whenever all type variables are mapped to identity relations, the interpretation of any type is also the
identity relation.

For dependent type theories, constructing models that satisfy the Identity Extension Lemma is generally
challenging. Atkey, Ghani, and Johann (2014) show that the Identity Extension Lemma can be motivated
by the use of reflexive graphs in the construction of relationally parametric models. They also construct a
relationally parametric model of dependent types in reflexive graphs. In that model, the universe of small
types is interpreted as a universe of discrete and proof-irrelevant reflexive graphs.

Although the general setting differs, external univalence seems to be related to the Identity Extension
Lemma, as our goal is to interpret every type as a (type-valued) relation that is also an identity type. We
also almost use reflexive graphs in our constructions, except that we have to replace the diagram shape of
reflexive graphs by an inverse diagram shape (see section 6).

Univalent Parametricity. Tabareau, Tanter, and Sozeau (2021) give a univalent parametricity translation for a
type theory with the univalence axiom. The univalence axiom is needed in their translation of the universes.
This translation allows for the transport of proofs and structures over equivalences. In many instances, the
transport is effective, meaning that the output term does not actually rely on the univalence axiom. In these
cases, the translated terms can be used even in non-univalent type theories.

Tabareau et al. implemented this univalent parametricity using the typeclass mechanism of Coq. Ringer
et al. (2019) also implemented a related transformation as a Coq plugin.

In our work, we show that the transport of structures over equivalences can be achieved even for non-
univalent type theories, if their universes do not have a coding function. Our constructions involve a
homotopical inverse diagram model that is closely related to the univalent parametricity translation of
Tabareau et al.

We do not provide any algorithmic implementation of our results. However, we work in a constructive
metatheory, it is in principle possible to extract an algorithm from our proofs. Furthermore most of our
constructions involve syntactic manipulations that should be directly implementable.

Semi-model structures on categories of models of type theories. Kapulkin and Lumsdaine (2018) construct left
semi-model structures on the categories of models of type theories with identity types, Σ-types, and
(optionally) Π-types with function extensionality. The properties of these semi-model structures can be
used to transport structures over equivalences. They prove the existence of the semi-model structures
using several homotopical inverse diagram models. For this purpose, Kapulkin and Lumsdaine (2021) have
constructed homotopical inverse diagram models over arbitrary homotopical inverse categories. Note that
closely related homotopical gluing models had been constructed before by Shulman (2015). Isaev (2017) has
also constructed some model structures on categories of models of type theories with an interval.

We will show in another paper that a SOGAT equipped with homotopy relations satisfies external
univalence if and only if its category of models is a left semi-model category, for classes of trivial cofibrations,
cofibrations and weak equivalences that are derived from the SOGAT and the chosen homotopy relations.
Thus our results will yield an alternative proof of the results of Kapulkin and Lumsdaine. Since we prove
external univalence for a large class of type theories, we will also obtain left semi-model structures for a
large class of type theories.
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Computing with univalence. Proving external univalence for a theory essentially involves providing a computa-
tional explanation of univalence in a very restricted setting: the outer layer of the coclassifying (Σ, Πrep)-CwF
of the theory. It has only Σ-types, some Π-types, and some base types. In particular, there is no universe
classifying the outer types, so univalence cannot be iterated. As a consequence, giving a computational
explanation of external univalence is much simpler than for internal univalence.

Nevertheless, there are some similarities between our setting and computation with internal univalence.
Some of our constructions are reminiscent of the cubical type theory without an interval of Altenkirch and
Kaposi (2015), which was an early attempt at providing a computation interpretation of internal univalence.

Principle of equivalence. Makkai’s Principle of Isomorphism (Makkai 1998) is the idea that “All grammatically
correct properties of objects of a fixed category are to be invariant under isomorphism.” These ideas were
formally developed in the framework of First-Order Logic with Dependent Sorts (Makkai 1995). There was
also prior work by Freyd (1976) and Blanc (1978), showing that first-order categorical statements can be
transported over equivalences of categories, as long as they do not mention equalities between objects. In a
recent talk, Henry (2020) has explained the relationship between these ideas and homotopy theory.

Ahrens, North, et al. (2020) have revisited FOLDS in a univalent setting, and give a generic definition of
“indiscernability” for any FOLDS-signature. FOLDS-signatures can be identified with first-order generalized
algebraic theories without operations. It would be interesting to investigate whether indiscernabilities are
homotopy relations that always satisfy external univalence in our setting.

∞-type theories. We expressed external univalence using the structure of identity types on the coclassifying
(Σ, Πrep)-CwF of a SOGAT T . This coclassifying (Σ, Πrep)-CwF then has the structure of a model of type
theory with Σ-types, (weakly stable) identity types and some Π-types. In line with internal language
conjectures (Kapulkin and Lumsdaine 2018; Kapulkin and Szumiło 2017), which assert that models of type
theories with identity types and other structures are the internal languages of structured ∞-categories, the
coclassifying (Σ, Πrep)-CwF ought to be the internal language of some ∞-category with representable maps.

Nguyen and Uemura (2022) have used a precise definition of ∞-categories with representable maps as a
notion of ∞-type theory. Such an ∞-type theory has an ∞-category of models; in a model all substitution
laws and computation rules only hold up to homotopy. They have also established some coherence theorems
that compare some ∞-type theories with some 1-type theories.

Our results provide a way to work with objects that are morally ∞-type theories, without relying on any
simplicial presentation of ∞-categories. Instead we morally use a type-theoretic definition of (structured)
∞-categories, originally inspired by Brunerie’s type-theoretic definition of ∞-groupoids (Brunerie 2016,
Appendix B).

2. BACKGROUND

We work in a constructive metatheory.

2.1. Notations. We use different relation symbols for the different notions of identifications that occur in
this paper. We reserve the use of (∼) for homotopy relations associated to a theory (see definition 4.1).
The symbol (≃) is used for equivalences between types and identifications (terms of an identity type).
Isomorphisms are denoted by the symbol (∼=).

2.2. Factorization systems. We recall some basic results on (both weak and orthogonal) factorization systems
over locally finitely presentable categories. We omit all proofs. Details on locally presentable categories
can be found in the standard reference book by Adamek and Rosicky (1994). A general introduction to
factorization systems can be found in notes by Riehl (2008).

We fix a locally finitely presentable category C.

Definition 2.1. Let l : A→ B and r : X → Y be two maps in C. We say that l has the left lifting property
with respect to r, or that r has the right lifting property with respect to l if for any square (lifting problem) of
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the form

A X

B Y ,

l

f

r
g

there exists a diagonal map h : B→ X such that h ◦ l = f and g = r ◦ h. In that case we write l � r.
We say that l has the unique left lifting property with respect to r, when the diagonal filler h is unique.

This is also denoted by l ⊥ r ⌟

Proposition 2.2. Given l : A → B and r : X → Y, we have l ⊥ r if and only if l � r and ∇ f � r where
∇ f : B +A B→ B is the codiagonal of f . □

Definition 2.3. A weak factorization system consists of two classes L and R of maps of C, such that

L = {l : A→ B | ∀r : X → Y, l � r},
R = {r : X → Y | ∀l : A→ B, l � r},

and such that every map can be factored as a map in L followed by a map in R. ⌟

Definition 2.4. An orthogonal factorization system consists of two classes L and R of maps of C, such that

L = {l : A→ B | ∀r : X → Y, l ⊥ r},
R = {r : X → Y | ∀l : A→ B, l ⊥ r},

and such that every map can be factored as a map in L followed by a map in R. ⌟

Proposition 2.5. Any orthogonal factorization system is also a weak factorization system. Conversely, a weak
factorization system is an orthogonal factorization system if and only if for every f ∈ L, ∇ f ∈ L. □

We fix a set X of maps in C.

Definition 2.6. An X -cellular map is a sequential composition of pushouts of coproducts of maps in X . A
X -cellular complex is an object A of C such that the unique map 0C → A is an X -cellular map.

A finite X -cellular map is a finite composition of pushouts of maps in X . A finite X -cellular complex is
an object A of C such that the unique map 0C → A is a finite X -cellular map. ⌟

We see X -cellularity as additional structure on the maps of C. The cellular maps are usually defined
as arbitrary transfinite compositions of pushouts of coproducts of maps in X ; but since C is locally finitely
presentable, it suffices to consider sequential compositions.

Lemma 2.7 (Small object argument). There is a weak factorization system on C, said to be cofibrantly generated by
X . The right class of maps consists of maps with the right lifting property with respect to every map in X . The maps in
the left class are the retracts of X -cellular maps. Furthermore, every map in C factors as a X -cellular map followed by
a map in the right class. □

Lemma 2.8 (Small object argument for orthogonal factoriation systems). There is an orthogonal factorization
system on C, generated by X . The maps in the right class are the maps with the unique right lifting property with
respect to every map in X . As a weak factorization system, it is cofibrantly generated by

X ∪ {∇ f | f ∈ X }. □

2.3. Internal language of presheaf categories. We frequently use the type-theoretic internal languages of
presheaf categories throughout this paper.

We use Psh(C) to refer to the presheaf topos over C; it is a model of extensional type theory with a hierarchy
of universes closed under many type-theoretic structures, including dependent products, dependent sums,
extensional equality types, quotient types, etc.

We use Ĉ to refer to the presheaf category over C. It could be the underlying category of the topos Psh(C),
but we typically assume that Ĉ lives in a smaller universe than Psh(C).
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The types of Psh(C) are the dependent presheaves; a dependent presheaf Y over a presheaf X is equiva-
lently a presheaf over the category of elements

∫
C X.

The universes of Psh(C) are the Hofmann-Streicher universes; they classify the (i-small) dependent
presheaves. We denote them by Ui, or just U .

We often need to reason externally with objects that were defined in the internal language. In that case, we
borrow the following notations from crisp type theory (Shulman 2017). If X is a presheaf over C, i.e. a type
of Psh(C) over the empty context of Psh(C), we write x :: X to indicate that x is a global element of X. When
the category C has a terminal object ⋄, this means that x is an element of X⋄. In particular, if x :: y(Γ)→ X,
then x is a global element of the exponential presheaf (y(Γ) → X), or equivalently an element of XΓ by
the Yoneda lemma. We leave implicit such uses of the Yoneda lemma. Conversely, whenever we have a
global element x of X, we can use it in the internal language of Psh(C) wherever an element of X would be
expected.

2.3.1. Local representability. We recall the notion of locally representable dependent presheaves, which is
used to model context extensions.

Definition 2.9. A dependent presheaf Y over a presheaf X is locally representable when for every element
x :: y(Γ)→ X, the restricted presheaf

Y|x : (C/Γ)op → Set,

Y|x(ρ : ∆→ Γ) ≜ Y∆(x[ρ]).

is representable.
Its representing object consists of an extended context Γ.Y|x along with an isomorphism

⟨p, q⟩ : y(Γ.Y|x) ∼= (γ : y(Γ))×Y(x(γ)).

We will often denote the extended context by (γ : Γ).Y(x(γ)) and implicitly coerce through the isomor-
phism above. ⌟

A dependent presheaf Y is locally representable if and only if the corresponding total natural transforma-
tion ΣXY → X is a representable natural transformation (Awodey 2018).

There is a universe Urep classifying the locally representable dependent presheaves in Psh(C), see for
instance (Streicher 2014) for a construction.

2.4. Type-theoretic structures over internal families. We now work internally to a presheaf topos Psh(C).

2.4.1. Internal families.

Definition 2.10. A family is a pair (Ty,Tm), where Ty : U and Tm : Ty→ U . It is said to have representable
elements when Tm(A) is locally representable for any type A, i.e. when Tm : Ty→ Urep. ⌟

The elements of Ty are often called types, and the elements of Tm are called terms.

Definition 2.11. A restriction Ty′ → Ty of a family (Ty,Tm) consists of a presheaf Ty′ : U along with a map
ι : Ty′ → Ty. It induces a restricted family (Ty′,Tm′), with Tm′(A) = Tm(ι(A)).

A subfamily Ty′ ↪→ Ty is a restriction that is also a monomorphism. ⌟

We will often leave ι implicit, especially when it is a monomorphism.

2.4.2. Basic type-theoretic structures.

Definition 2.12. A 1-type structure over a family (Ty,Tm) consists of a type

1 : Ty

along with an isomorphism

Tm(1) ∼= {tt}. ⌟
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Definition 2.13. A Σ-type structure over a family (Ty,Tm) consists of an operation

Σ : (A : Ty)(B : Tm(A)→ Ty)→ Ty

along with an isomorphism

Tm(Σ(A, B)) ∼= ((a : Tm(A))× (b : Tm(B(a)))). ⌟

Definition 2.14. A Π-type structure over a family (Ty,Tm) consists of an operation

Π : (A : Ty)(B : Tm(A)→ Ty)→ Ty

along with an isomorphism

Tm(Π(A, B)) ∼= ((a : Tm(A))→ Tm(B(a))). ⌟

We will implicitly coerce through these isomorphisms.

2.4.3. First-order Π-types. We also need to consider a restriction of Π-types that will be used to describe the
binders of type theories.

Definition 2.15. The structure of Π-types in a family (Ty,Tm) with arities in a family (Ty′,Tm′) consists of
an operation

Π : (A : Ty′)(B : Tm′(A)→ Ty)→ Ty

along with an isomorphism

Tm(Π(A, B)) ∼= ((a : Tm′(A))→ Tm(B(a))). ⌟

Definition 2.16. The structure of first-order Π-types in a family (Ty,Tm) consists of a restricted family
RepTy→ Ty, along with Π-types in (Ty,Tm) with arities in RepTy. ⌟

The intuition here is that Ty is the family of first-order types, while RepTy is its restricted family of zeroth-
order types. The domain of a first-order Π-type has to be a zeroth-order Π-type. Elements of RepTy will
also be called representable types, since they will typically be interpreted as locally representable dependent
presheaves. We sometimes use Πrep to refer to the first-order Π-types.

We use these first-order Π-types in the definition of second-order generalized algebraic theories; in a
second-order theory, the domain of an operation can be any first-order type.

Example 2.17. A presheaf topos Psh(C) is equipped with first-order Π-types, where the representable types
are the locally representable dependent presheaves. The first-order Π-types could be defined to be the usual
Π-types of the presheaf topos, but there is also an alternative definition that relies on the local representability
of the domain. Indeed, if X is a presheaf, Y is a dependent presheaf over X and Z is a dependent presheaf
over ΣXY, we can pose

Π(Y, Z)Γ(x) ≜ Z(γ:Γ).Y(x(γ))(λ(γ,−) 7→ x(γ)).

In the simply-typed case, this was first observed by Hofmann (1999).
Because the two definitions satisfy the same universal property, they are interchangeable. However

the alternative definition gives a first-order algebraic presentation of the categories of models of algebraic
theories with binders, ensuring that the category of models is locally finitely presentable and the existence of
initial models. ⌟

2.4.4. Telescopes. Given any family (Ty,Tm), we can consider the family (Ty⋆,Tm⋆) of telescopes; the notation
Ty⋆ is inspired from the notation A⋆ for the set of lists of elements of a set A. The elements of Ty⋆ are finite
dependent sequences

(A1 : Ty, A2 : Tm(A1)→ Ty, A3 : (a1 : Tm(A1))→ (a2 : Tm(A2(a1)))→ Ty, . . . )

of types, and elements of Tm⋆(A) are sequences

(a1 : Tm(A1), a2 : Tm(A2(a1)), a3 : Tm(A3(a1, a2)), . . . )

of terms of the types of the sequence A.
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Definition 2.18. The family (Ty⋆,Tm⋆) is defined by induction-recursion as follows:

Ty⋆ : U ,

Tm⋆ : Ty⋆ → U ,

⋄ : Ty⋆,

Tm⋆(⋄) ≜ ⊤,

_._ : (A : Ty⋆)→ (Tm⋆(A)→ Ty⋆)→ Ty⋆,

Tm⋆(A.B) ≜ (a : Tm⋆(A))× Tm(B(a)). ⌟

The family of telescopes can be equipped with (strictly associative and unital) Σ-types, given by concate-
nation of the sequences of types. When the base family (Ty,Tm) has Σ-types, there is a family morphism
Ty⋆ → Ty that interprets telescopes as (either left-nested or right-nested) iterated Σ-types.

2.5. Categories with Families. We now return to an external setting. The internal notions of type-theoretic
structures yield external notions of models equipped with these type-theoretic structures. More precisely,
these models are categories with families (CwFs,Dybjer 1995; Castellan, Clairambault, and Dybjer 2019).

Note that for most of this paper, CwFs are not directly used as the notion of model of type theory, but
rather as worlds in which the notion of model of type theory can be interpreted. In other words, they do not
correspond to the object theories we are interested in, but rather to logical frameworks in which the object
theories can be specified and interpreted. Accordingly, while we study arbitrary object theories, the CwFs
will only be equipped with a handful of structures (Σ-types, (first-order) Π-types, and some identity types).
These correspond (Clairambault and Dybjer 2014) to well-known classes of structured categories, such as
clans, finitely complete categories, representable map categories, locally cartesian closed categories, etc.

Definition 2.19. A category with families (CwF) C is a category, equipped with a terminal object, along
with a global family (TyC ,TmC) with representable elements in Psh(C). ⌟

We have a locally finitely presentable 1-category CwF of CwFs and strict CwF morphisms.

Definition 2.20. A Σ-CwF is a CwF whose family is equipped with 1- and Σ- types. ⌟

We write CwFΣ for the 1-category of Σ-CwFs.

Definition 2.21. A (Σ, Πrep)-CwF is a CwF equipped with:

• A restriction RepTy→ Ty inducing a family of representable types (or first-order types).
• First-order Π-types with respect to RepTy→ Ty.
• Along with 1- and Σ- type structures over the families Ty and RepTy. They do not have to be strictly

preserved by RepTy→ Ty (but they are automatically preserved up to isomorphism). ⌟

We write CwFΣ,Πrep for the 1-category of (Σ, Πrep)-CwFs and strict morphisms.

Example 2.22. Any presheaf category Ĉ is equipped with the structure of a (Σ, Πrep)-CwF where:

• The types are the dependent presheaves.
• The representable types are the locally representable dependent presheaves.
• The first-order Π-types are defined as in example 2.17. ⌟

2.6. Identity types. We now recall the definitions of some classes of identity types. We only use identity
types with an elimination rule à la Paulin-Mohring, also called based path induction. We only work with weak
identity types, whose computation rule only holds up to a path.

We use both strictly stable and weakly stable variants of the identity type. In presence of either variant, we
have well-behaved notions of contractibility, equivalence, transport, etc. that we don’t explicitely introduce.

2.6.1. Weak identity types.
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Definition 2.23 (Weak identity types). The structure of weak identity types over an internal family (Ty,Tm)
consists of four components Id, refl, J, Jβ with the following signature:

Id : ∀(A : Ty) (x, y : Tm(A))→ Ty,

refl : ∀(A : Ty) (x : Tm(A))→ Tm(Id(A, x, x)),

J : ∀(A : Ty) (x : Tm(A))

(P : (y : Tm(A))(p : Tm(Id(A, x, y)))→ Ty) (d : Tm(P(x, refl(x))))

→ ∀y p→ Tm(P(y, p)),

Jβ : ∀A x P d→ Tm(Id(P(x, refl(x)), J(A, x, P, d, x, refl(x)), d)). ⌟

Once a CwF has weak identity types, many notions can be derived, such as composition of paths, the
action on paths of a function, the notion of contractibility, etc. They can be defined mostly in the same way
as in the HoTT book (Univalent Foundations Program 2013), although some additional effort is needed to
deal with the absence of the strict β-rule for J and with the lack of Σ- and Π- types.

2.6.2. Weakly stable identity types. We will only consider weakly stable identity types with a weak computation
rule. We fix a base CwF C.

Definition 2.24 (Weakly stable identity types). A Id-introduction context is a triple (Γ, A, x), where

Γ : ObC ,

A :: y(Γ)→ Ty,

x :: (γ : y(Γ))→ Tm(A(γ)).

Here Γ is an object of C, and A and x are types and terms that only depend on Γ.
A weakly stable identity type introduction structure consists, for every Id-introduction context (Γ, A, x),

of operations

Id(Γ,A,x) :: ∀(γ : y(Γ))(y : Tm(A(γ)))→ Ty,

refl(Γ,A,x) :: ∀(γ : y(Γ))→ Tm(Id(Γ,A,x)(γ, x)).

A Id-elimination context over an Id-introduction context (Γ, A, x) is a tuple (∆, γ, P, d), where

∆ : ObC ,
γ : ∆→ Γ,

P :: ∀(δ : y(∆))(y : Tm(A(γ(δ))))(p : Tm(Id(Γ,A,x)(γ(δ), y)))→ Ty,

d :: ∀(δ : y(∆))→ Tm(P(δ, x(γ(δ)), refl(Γ,A,x)(γ(δ), x(γ(δ))))).

A weakly stable identity type elimination structure consists, for every Id-elimination context (∆, γ, P, d)
over (Γ, A, x), of operations

J(Γ,A,x,∆,γ,P,d) :: ∀(δ : y(∆))(y : Tm(A(γ(δ))))(p : Tm(Id(Γ,A,x)(γ(δ), y)))→ Tm(P(δ, y, p)),

Jβ(Γ,A,x,∆,γ,P,d) :: ∀(δ : y(∆))→ Tm(Id(∆,P′ ,d)(δ, J(Γ,A,x,∆,γ,P,d)(δ, x(γ(δ)), refl(Γ,A,x)(γ(δ))))),

P′(δ′) ≜ P(δ′, x(δ′), reflΓ(γ(δ
′), x(δ′))).

A weakly stable identity type structure consists of introduction and elimination structures. ⌟

Definition 2.25. Let C be a CwF that is equipped with weakly stable identity types. Given a type A :: y(Γ)→
TyC , the set isContr(A) of witnesses of contractibility of A is defined as

isContr(A) ≜ (∀γ→ TmC(A))× (∀γ (x, y : TmC(A))→ TmC(Id(Γ.A,A)((γ, x), y))). ⌟

Definition 2.26. Let C be a (Σ, Πrep)-CwF that is also equipped with weakly stable identity types. We
say that C satisfies function extensionality if for every Γ : ObC , A :: y(Γ) → RepTyC , B :: (γ : y(Γ)) →
TmC(A(γ))→ TyC and f :: (γ : y(Γ))→ TmC((a : A(γ))→ B(γ, a)), the type

(g : (a : A(γ))→ B(γ, a))× ((a : A(γ))→ Id((γ′ :Γ).(a′ :A(γ′)),B(γ′ ,a′), f (γ′ ,a′))((γ, a), g(a)))
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is contractible (over (γ : Γ)). ⌟

We write CwFΣ,Πrep,Idws for the category of (Σ, Πrep)-CwFs equipped with weakly stable identity types that
satisfy function extensionality. A (Σ, Πrep, Idws)-CwF can be thought of as an ∞-category with representable
maps.

3. SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES

We introduce our definition of second-order generalized algebraic theory (SOGAT), which are algebraic
theories with dependent sorts and bindings. It is closely related to Uemura’s general definition of type
theory with functorial semantics in representable map categories (Uemura 2019); a large part of the material
presented in this section can be found in Uemura’s work, with a different presentation. We call these theories
SOGATs rather than type theories to emphasize that we also consider theories that are not usually seen as
type theories, such as the (first-order) generalized algebraic theory of categories. We note that Uemura uses
the term SOGAT to refer to syntactic presentations of representable map categories in his thesis (Uemura
2021).

Our definition differs from Uemura’s definition in the following ways:
• Uemura’s representable map categories have all finite limits. This means that they generalize

essentially algebraic theories (EATs) rather than generalized algebraic theories (GATs). Essentially
algebraic theories do not have dependent sorts, but allow for partial operations instead. Any
generalized algebraic theory induces an essentially algebraic theory with an equivalent category
of models, but this translation loses information about the sort dependencies. This information
is important; for example it equips the category of models of a generalized algebraic theory with
notions of cofibrations and trivial fibrations (see section 3.4).
• We use (Σ, Πrep)-CwFs instead of representable map categories. This is partially a matter of prefer-

ence, as (Σ, Πrep)-CwFs ought to be equivalent to categories with classes of representable maps and
display maps (“representable map clans”). One advantage of our approach is that freely generated
(Σ, Πrep)-CwFs are perhaps easier to understand syntactically, since they are themselves the initial
models of some type theories. Furthermore, we may embed (Σ, Πrep)-CwFs into CwFs with addi-
tional structure. In particular we will consider (Σ, Πrep, Idws)-CwFs, which should correspond to
some notion of representable map ∞-categories. It seems possible to observe both homotopical and
computational properties of the theories using (Σ, Πrep, Idws)-CwFs, while computational properties
are not always easily observable with ∞-categories (depending on the chosen model of ∞-categories).
• We prefer to work with the 1-category of (Σ, Πrep)-CwFs and strict (Σ, Πrep)-CwF morphisms,

instead of the (2, 1)-category of (Σ, Πrep)-CwFs and pseudo-morphisms. Similarly, we prefer to
work with its 1-category of models and strict morphisms, rather than the (2, 1)-category of models
and weak morphisms. One of the reason is that we consider factorization systems and semi model
structures on these categories, which are easier to understand in the 1-categorical setting. This
does not play an important role in this paper, as we work almost exclusively with the coclassifying
(Σ, Πrep)-CwF of the theory, without considering morphisms between other models.

3.1. Definition and functorial semantics.

Definition 3.1. A second-order generalized algebraic theory (SOGAT) is an {Ity, Ityrep , Itm, Etm}-cellular
(Σ, Πrep)-CwF T , where the maps {Ity, Ityrep , Itm, Etm} are the generic extensions of (Σ, Πrep)-CwFs by a
type, representable type, term or term equality:

Ity : FreeΣ,Πrep(Γ ⊢)→ FreeΣ,Πrep(Γ ⊢ A type),

Ityrep : FreeΣ,Πrep(Γ ⊢)→ FreeΣ,Πrep(Γ ⊢ A typerep),

Itm : FreeΣ,Πrep(Γ ⊢ A type)→ FreeΣ,Πrep(Γ ⊢ a : A),

Etm : FreeΣ,Πrep(Γ ⊢ x, y : A)→ FreeΣ,Πrep(Γ ⊢ x = y). ⌟

In other words, a SOGAT is a presentation of a (Σ, Πrep)-CwF by collections of generating types, gener-
ating representable types, generating terms and generating equations between terms. We will write these
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generators using a red, bold font. In practice, a SOGAT is given by a signature, and the (Σ, Πrep)-CwF T is
reconstructed from the signature. We keep the notion of signature informal in this paper; a formal definition
of signature can be given by modifying the definition of QIIT-signature of Kaposi, Kovács, and Altenkirch
(2019). For every generating type, term or equation in a signature, the (Σ, Πrep)-CwF is extended by pushout
against a map in {Ity, Ityrep , Itm, Etm}.

For example, the signature of a pointed dependent type

A : Ty,

B : (a : Tm(A))→ Ty,

b : (a : Tm(A))→ Tm(B(a)).

gets translated to the following iterated pushout:

FreeΣ,Πrep(Γ ⊢) 0Σ,Πrep

FreeΣ,Πrep(Γ ⊢ A type) 0Σ,Πrep [A] FreeΣ,Πrep(Γ ⊢)

FreeΣ,Πrep(Γ ⊢ A type) 0Σ,Πrep [A, B] FreeΣ,Πrep(Γ ⊢ A type)

FreeΣ,Πrep(Γ ⊢ a : A type) 0Σ,Πrep [A, B, b] .

⟨⋄⟩

⌜
⟨⋄,A⟩ ⟨(a:A)⟩

⌝

⟨(a:A),B(a)⟩ ⟨(a:A),B(a)⟩

⟨(a:A),B(a),b(a)⟩

Our running examples will be the first-order generalized algebraic theory TCat of categories and the type
theory TId of weak identity types.

Example 3.2. The (first-order) generalized algebraic theory of categories TCat is given by the following
signature:

ob : Ty

Ob ≜ Tm(ob)
hom : Ob→ Ob→ Ty

Hom(x, y) ≜ Tm(hom(x, y))

eqhom : ∀x y→ Hom(x, y)→ Hom(x, y)→ Ty

EqHom( f , g) ≜ Tm(eqhom( f , g))

id : ∀x → Hom(x, x)

comp : ∀x y z→ Hom(x, y)→ Hom(y, z)→ Hom(x, z)

f ◦ g ≜ comp(g, f )

irefl : ∀x y → ( f : Hom(x, y))→ EqHom( f , f )
id ◦ f = f
f ◦ id = f

( f ◦ g) ◦ h = f ◦ (g ◦ h)

∀x y f g→ (p, q : EqHom( f , g))→ p = q

EqHom( f , g)→ f = g

We use the capitalized Ob, Hom, EqHom to denote the elements of the sorts ob, hom and eqhom. We also
use _ ◦ _ as an infix notation for composition.
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Note that including the sort eqhom of equalities between morphisms does not change the categories of
models of TCat. However it has to be included in order to determine the correct “language of categories”. In
our setting, including this sort is needed to equip TCat with homotopy relations in section 4.1; isomorphisms
cannot be defined without mentioning equality of morphisms. ⌟

Example 3.3. The SOGAT TCwF of a family with representable elements is given by the following signature:

ity : Ty

iTy ≜ Tm(ity)
itm : iTy→ RepTy

iTm(A) ≜ Tm(itm(A))

Type-theoretic structures (Σ, Π, etc.) can be specified by extensions of this signature by new operations
and equations. In particular, the theory TId of weak identity types is the extension of TCwF by the new
operations (iId, irefl, iJ, iJβ) with the signature given in definition 2.23. ⌟

For the remainder of this section, we fix an arbitrary SOGAT T .
We now briefly recall the main definitions of the functorial semantics of T ; we refer the reader to Uemura

2019 for further details. The main results of this paper only involve the syntax of T ; but are motivated by the
semantics.

Definition 3.4. An internal model of T in a (Σ, Πrep)-CwF C is a (Σ, Πrep)-CwF morphism

C : T → C. ⌟

When unambiguous, we will write XC , AC , aC , etc. instead of C(X), C(A), C(a), etc. for the application of
the (Σ, Πrep)-CwF morphism C on objects, morphisms, types and terms.

By the universal property of T , an internal model in C is uniquely determined by the image of the
generators of T , that is by an interpretation of the signature T in C.

We have a locally finitely presentable 1-category (CwFΣ,Πrep\T ) of (Σ, Πrep)-CwFs equipped with an
internal model of T . The identity morphism id : T → T equips T with the structure of an internal model,
called the generic model of T . It is also the initial object of (CwFΣ,Πrep\T )).

Definition 3.5. A model of T consists of a category C with a terminal object, along with an internal model of
T in the (Σ, Πrep)-CwF Ĉ, that is a (Σ, Πrep)-CwF morphism C : T → Ĉ. ⌟

Definition 3.6. A weak morphism F of models of T consists of a functor F : C → D such that:
• The functor F weakly preserves terminal objects.
• For every object X : T , we have a transformation

FX : (Γ : Cop)→ (y(Γ)→ XC)→ (y(F(Γ))→ XD),

contravariantly natural in Γ.
• For every morphism α : X → Y, the following square commutes

(y(Γ)→ XC) (y(F(Γ))→ XD)

(y(Γ)→ YC) (y(F(Γ))→ YD)

(αC◦−)

FX

(αD◦−)

FY

• Remark that we obtain, for every object X : T and type A :: y(X)→ TyT , a natural transformation

FA : (Γ : Cop)→ (x : y(Γ)→ XC)→ (a : (γ : y(Γ))→ AC(x(γ)))

→ ((γ : y(F(Γ)))→ AD(FX(x)(γ)))

such that FX.A(x, a) = (FX(x), FA(x, a)).
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• Context extensions are weakly preserved: for every object X : T , representable type A :: y(X) →
RepTyT , object Γ : C and element x :: y(Γ)→ XC , the comparison map〈

F(p), FA(q)
〉

: F((γ : Γ).AC(x(γ)))→ (γ : F(Γ)).AD(FX(x)(γ))

is an isomorphism.
A morphism is strict if the terminal object and context extensions are strictly preserved. ⌟

Definition 3.7. A 2-cell between two weak morphisms F, G : C → D of models of T consists of a natural
isomorphism α : F ∼= G, such that:

• For every object X : T , context Γ : C, elements x :: y(Γ)→ XC and γ : y(F(Γ)), we have FX(x, γ) =
GX(x, αΓ(γ)). ⌟

We have a (2, 1)-category of models, weak morphisms and 2-cells, and a 1-category ModT of models and
strict morphisms. We will mainly work with the 1-category ModT . The category ModT is locally finitely
presentable; in particular we have an initial model 0T and more general freely generated models.

3.2. Structure of the types of a SOGAT. We write GenTyT for the set of generating types of T ; it can be
obtained from the presentation of T as an {Ity, Ityrep , Itm, Etm}-cellular (Σ, Πrep)-CwF. For every S : GenTyT ,
we have an object ∂S : T and a type S : y(∂S)→ TyT .

We also have a subset GenRepTyT ⊆ GenTyT of generating representable types of T .
For example, GenTyTCat

= {ob, hom} with ∂ob = 1 and ∂hom = ob× ob. For TId, we have GenTyTId
=

{ity, itm} and GenRepTyTId
= {itm}, with ∂ity = 1 and ∂itm = ity.

Because a SOGAT cannot contain any equations between sorts, the types of T can all be reconstructed by
closing the generating types under substitution and the type-formers Σ, 1 and Π. We can consider the same
closure in arbitrary internal models of T . Furthermore we stratify these types into basic types (obtained
by closing the generating types under substitution), the monomial types (obtained by closing the basic
types under dependent products with arities in representable types) and the polynomial types (“sums of
products”, obtained by closing the monomial types under dependent sums).

Definition 3.8. Let C be a (Σ, Πrep)-CwF equipped with an internal model of T . We define families BTyC ,
MonoTyC and PolyTyC that are restrictions of TyC , and a restricted family BRepTyC → RepTyC . We work
internally to Psh(C).

• A basic type S(σ) : BTyC consists of S : GenTyT and σ : TmC(∂SC).
The corresponding type in TyC is SC(σ).

• A basic representable type S(σ) : BRepTyC consists of S : GenRepTyT and σ : TmC(∂S).
• A monomial type [∆ ⊢ A] : MonoTyC consists of a telescope ∆ : BRepTy⋆C of basic representable types,

along with a dependent basic type A : Tm⋆
C(∆)→ BTyC . The corresponding type in TyC is an iterated

first-order Π-type.
• A polynomial type is a telescope of monomial types: PolyTyC ≜ MonoTy⋆C . The corresponding type

in TyC is obtained as an iterated Σ-type. ⌟

We also define the closure ClosΣ,Πrep(BTyC) of basic types under 1-, Σ- and first-order Π- types.

Definition 3.9. We define restricted families ClosΣ,Πrep(BTyC) → TyC and ClosΣ(BRepTyC) → RepTyC by
induction-recursion (internally to Psh(C)).

ClosΣ(BRepTyC) : U ,

ιrep : ClosΣ(BRepTyC)→ RepTyC ,

ClosΣ,Πrep(BTyC) : U ,

ι : ClosΣ,Πrep(BTyC)→ TyC .

The family ClosΣ(BRepTyC) has constructors τrep : BRepTyC → ClosΣ(BRepTyC), 1 and Σ, with ιrep(τrep(A)) =
A, ιrep(1) = 1 and ιrep(Σ(A, B)) = Σ(ιrep(A), λa 7→ ιrep(B(a))). Similarly, the family ClosΣ,Πrep(BTyC) has
constructors τ : BTyC → ClosΣ,Πrep(BTyC), − : RepTyC → ClosΣ,Πrep(BTyC), 1, Σ and Πrep that are preserved
by ι. ⌟
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Proposition 3.10. The canonical maps PolyTyC → ClosΣ,Πrep(BTyC) and BRepTy⋆C → ClosΣ(BRepTyC) are
essentially surjective: for every A : ClosΣ,Πrep(BTyC), there is some A0 : PolyTyC such that TmC(A0) ≃ TmC(A);
and for every A : ClosΣ(BRepTyC), there is some A0 : BRepTy⋆C such that TmC(A0) ≃ TmC(A).

Proof. This follows from the facts that Σ-types are essentially associative and that (first-order) Π-types
essentially distribute over Σ-types. □

Since the presentation of T does not include any type equation, the types of T are exactly the closure of
the basic types under 1, Σ and first-order Π -types.

Proposition 3.11. The canonical maps

ClosΣ,Πrep(BTyT )→ TyT

and

ClosΣ(BRepTyT )→ RepTyT

are isomorphisms. □

We omit the proof; it follows from a standard normalization argument. This result allows us to use
induction over the structure of types of T .

Corollary 3.12. The canonical maps PolyTyT → TyT and BRepTy⋆T → RepTyT are essentially surjective: for every
A : TyT , there is some A0 : PolyTyT such that A0 ≃ A; and for every A : RepTyT , there is some A0 : BRepTy⋆T such
that A0 ≃ A.

Proof. By proposition 3.10 and proposition 3.11. □

Proposition 3.13. The family restriction RepTyT → TyT is a monomorphism.

Proof. This follows from the isomorphism TyT
∼= ClosΣ,Πrep(BTyT ). Indeed RepTyT → ClosΣ,Πrep(BTyT ) is a

constructor of ClosΣ,Πrep(BTyT ), and is therefore injective. □

3.3. Contextual models. We can generalize the notions of contextuality from CwFs to the category of models
of an arbitrary SOGAT.

Definition 3.14. A morphism F : C → D in ModT is a contextual isomorphism if it is bijective on
every sort: for every generating type S : GenTyT , object Γ : C, boundary σ :: y(Γ) → ∂SC and element
a :: (γ : y(F(Γ))) → SD(F(σ)(γ)), there is a unique element a0 :: (γ : y(Γ)) → SC(σ(γ)) such that
F(a0) = a. ⌟

The contextual isomorphisms are the right class of maps of an orthogonal factorization system generated
by a set IT of maps in ModT .

IT ≜ {IS | S : GenTyT }
IS : FreeT (Γ ⊢ σ : ∂S)→ FreeT (Γ ⊢ x : S(σ))

The maps in the corresponding left class are called left contextual maps.

Definition 3.15. The contextual core cxl(C) is obtained from the factorization of the unique map 0T → C as
a left contextual map 0T → cxl(C) followed by a contextual isomorphism cxl(C)→ C. ⌟

Definition 3.16. A model C : ModT is contextual if cxl(C)→ C is an isomorphism. ⌟

The 1-category Modcxl
T of contextual models forms a coreflective subcategory of ModT ; the functor

cxl : ModT → Modcxl
T is right adjoint to the subcategory inclusion Modcxl

T → ModT .
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3.4. Trivial fibrations.

Definition 3.17. A morphism F : C → D in ModT is a trivial fibration if it is surjective on every sort: for
every generating type S : GenTyT , object Γ : C, boundary σ : y(Γ)→ ∂SC and element a : (γ : y(F(Γ)))→
SD(F(σ)(γ)), there exists an element a0 : (γ : y(Γ))→ SC(σ(γ)) such that F(a0) = a. ⌟

The trivial fibrations are the right class of maps of the weak factorization system that is cofibrantly
generated by the same set IT of maps that we used to define contextual isomorphisms. The maps in the left
class are called cofibrations.

In the case of the GAT TCat, the trivial fibrations are the trivial fibrations of the canonical model structure
on Cat, that is functors that are surjective on objects and fully faithful.

For the SOGAT TCwF, the (cofibrations, trivial fibrations) weak factorization system on CwF coincides
with the one defined by Kapulkin and Lumsdaine (2018).

4. THEORIES WITH HOMOTOPY RELATIONS

4.1. Homotopy relations. We now consider SOGATs that are equipped with an additional piece of data: a
choice of a homotopy relation for every generating sort of the theory.

From the point of view of model categories, this roughly corresponds to the choice of a relative cylinder
object for every generating cofibration.

Definition 4.1. The data of homotopy relations on a SOGAT T consists, for every generating type S : GenTyT ,
of a reflexive type-valued binary relation on its terms:

_ ∼S(_) _ :: (σ : ∂S)(x, y : S(σ))→ TyT ,

reflS(_) :: (σ : ∂S)(x : S(σ))→ x ∼S(σ) x. ⌟

Since these homotopy relations are specified in the (Σ, Πrep)-CwF T , they are automatically available in
any other model of T .

Example 4.2. Homotopy relations are defined over the theory of categories TCat as follows:

x ∼ob y ≜ (x ∼= y),

f ∼hom(x,y) g ≜ eqhom( f , g),

_ ∼eqhom( f ,g) _ ≜ 1,

where (x ∼= y) is the type of isomorphisms between x and y, i.e.

(x ∼= y) ≜ ( f : hom(x, y))× (g : hom(y, x))

× eqhom(g ◦ f , id)× eqhom( f ◦ g, id).

Reflexivities are given by the identity isomorphisms on objects, by irefl on morphisms, and by tt on equalities
between morphisms. ⌟

Example 4.3. Homotopy relations are defined over the type theory TId of weak identity types as follows:

A ∼ity B ≜ iEquiv(A, B)

x ∼itm(A) y ≜ itm(iId(A, x, y))

where iEquiv(A, B) is the type of relational equivalences between A and B. Note that even though
iEquiv(A, B) is not classified by an inner type in TId, it can be written as an outer type in TId.

Equiv(A, B) ≜ (R : itm(A)→ itm(B)→ ity)

× ((a : itm(A))→ isContr((b : B)× R(a, b)))

× ((b : itm(B))→ isContr((a : A)× R(a, b)))

isContr(X) ≜ (x : itm(X))× (∀(x, y : itm(X))→ itm(iId(X, x, y)))

Reflexivities are given by the identity equivalence iId− on types, and by irefl on terms. ⌟
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We fix a SOGAT T equipped with homotopy relations for the remainder of this section.

4.2. Classes of maps. The homotopy relations induce notions of weak equivalences and of fibrations over
the category ModT . In the case of the theory TId of weak identity types, we recover the classes of weak
equivalences and fibrations on CwFId that were introduced by Kapulkin and Lumsdaine (2018).

Definition 4.4. A morphism F : C → D in ModT is a weak equivalence if it is essentially surjective on
every sort: for every generating type S : GenTyT , object Γ : C, boundary σ :: y(Γ) → ∂SC , and element
x :: (γ : y(F(Γ))) → SD(F(σ)(γ)), there exists a lifted element x0 :: (γ : y(Γ)) → SC(σ(γ)) along with a
homotopy

p :: (γ : y(F(Γ)))→ F(x0)(γ) ∼SD(F(σ)(γ)) x(γ). ⌟

Definition 4.5. A morphism F : C → D in ModT is a fibration if it satisfies a lifting condition for homotopies
with a fixed left endpoint.

homotopy lifting: For every generating type S : GenTyT , object Γ : C, boundary σ :: y(Γ) → ∂SC ,
element x :: (γ : y(Γ))→ SC(σ(γ)) and homotopy

p :: (γ : y(F(Γ)))→ F(x)(γ) ∼SD(F(σ)(γ)) y(γ),

there exists a homotopy

p0 :: (γ : y(Γ))→ x(γ) ∼SC (σ(γ))
y0(γ)

such that F(y0) = y and F(p0) = p. ⌟

4.3. Univalent internal models. Recall that a (Σ, Πrep, Idws)-CwF is a (Σ, Πrep)-CwF equipped with weakly
stable identity types satisfying function extensionality. Consider a (Σ, Πrep, Idws)-CwF C equipped with
an internal model of T . Internally to C, we have two notions of “weak equality” between elements of the
model of T , given by the homotopy relations (∼) and by the (outer) identity types (≃). There is always a
comparison map that sends elements of the outer identity types (≃) to homotopies (∼), defined by sending
the outer reflexivity to the inner reflexivity. It is then natural to ask for this map to be an equivalence (with
respect to the outer identity types). We express this as a contractibility condition.

Definition 4.6. Let C be a (Σ, Πrep, Idws)-CwF equipped with an internal model of T . We say that the internal
model is univalent, or that the identity types are saturated (with respect to the homotopy relations) if for
every generating type S : GenTyT , the dependent type

(y : SC(σ))× (p : x ∼SC (σ)
y)

is contractible over (σ : ∂SC , x : SC(σ)), for the notion of contractibility induced by the outer identity types
(≃). ⌟

In the case of the theory TCat, an internal category is univalent in the sense of definition 4.6 when it is
univalent in the sense of HoTT (Ahrens, Kapulkin, and Shulman 2015).

4.4. External univalence. We can finally define the main notion of this paper.

Definition 4.7. We say that a SOGAT T equipped with homotopy relations satisfies external univalence
when the (Σ, Πrep)-CwF T can be equipped with weakly stable identity types satisfying function extension-
ality and saturation with respect to the homotopy relations. ⌟

The following claim will be proven in a future paper.

Claim 4.8. Let T be a SOGAT equipped with homotopy relations. It satisfies external univalence if and only
if the category Modcxl

T of contextual models of T , equipped with the classes of trivial fibrations, fibrations
and weak equivalences defined in definition 3.17, definition 4.5 and definition 4.4, is a left semi-model
category.
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5. CONTRACTIBILITY DATA AND REFLEXIVE EQUIVALENCES

We show that weakly stable identity types can be reconstructed from the data of reflexive relational
equivalences (also called one-to-one relations or one-to-one correspondences). Similar ideas are used in the
cubical type theory without an interval of Altenkirch and Kaposi (2015) and in the higher observational type
theory of Altenkirch, Kaposi and Shulman (Shulman 2022; Altenkirch, Kaposi, and Shulman 2022).

We fix a CwF C equipped with Σ-types.

Definition 5.1 (Internally to Psh(C)). Contractibility data over C consists of a dependent presheaf

isContr : TyC → U . ⌟

Note that contractibility is not propositional data, even though a witness of contractibility should be
unique up to homotopy. Whenever we say that some type A is contractible, we really mean that we have an
element of isContr(A).

We now assume that C is equipped with global contractibility data.

Definition 5.2 (Internally to Psh(C)). An equivalence E : A ≃ B between two types A, B : TyC consists of a
binary relation

E : TmC(A)→ TmC(B)→ TyC
that is functional in both directions, as witnessed by the following contractibility conditions

E.
−→
fun : ∀(a : TmC(A))→ isContr((b : B)× E(a, b)),

E.
←−
fun : ∀(b : TmC(B))→ isContr((a : A)× E(a, b)). ⌟

Definition 5.3 (Internally to Psh(C)). A reflexive equivalence is an equivalence E : A ≃ A that is additionally
equipped with a reflexivity map

E.refl : (a : TmC(A))→ TmC(E(a, a)). ⌟

Definition 5.4 (Internally to Psh(C)). A dependent equivalence for a dependent type B : TmC(A)→ TyC
over an equivalence E : A ≃ A consists of a family of equivalences

TB : ∀(x, y : TmC(A))→ TmC(E(x, y))→ B(x) ≃ B(y). ⌟

Definition 5.5. We say that C is equipped with reflexive equivalences when for every type A :: y(Γ)→ TyC ,
there is a reflexive equivalence

IdA :: ∀γ→ A(γ) ≃ A(γ).

We denote its reflexivity map by reflA :: ∀γ (x : TmC(A(γ)))→ IdA(γ, x, x). ⌟

Definition 5.6. We say that C is equipped with dependent equivalences when for every dependent type
B :: (γ : y(Γ))→ TmC(A(γ))→ TyC , there is a dependent equivalence

DIdA.B :: ∀γ (x, y : TmC(A(γ)))→ TmC(IdA(γ, x, y))→ B(γ, x) ≃ B(γ, y). ⌟

Note that we do not assume that DIdA.B is reflexive; the reason is that DIdA.B can be replaced by reflexive
dependent equivalences by considering the composition

DIdA.B(γ, x, y, p) ◦DIdA.B(γ, x, x, reflA(x))−1

when it is defined.

Definition 5.7. We say that a type A :: ∀γ→ TyC has a center (of contraction) if we have an element

centerA :: (γ : y(Γ))→ TmC(A(γ)).

Definition 5.8. We say that a type A :: ∀γ→ TyC has all paths, or a homogeneous all-paths operation, if
we have an element

hpathA :: ∀(γ : y(Γ)) (x, y : TmC(A(γ)))→ TmC(IdA(γ, x, y)).

In other words, the type A has all paths if it is a homotopy proposition, with respect to the identity type
IdA. ⌟



EXTERNAL UNIVALENCE FOR SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES 20

We will also need to consider an analogous heterogeneous structure for dependent contractible types, sim-
ilarly to homogeneous and heterogeneous compositions structures in cubical type theories (see e.g. Angiuli
et al. (2021)).

Definition 5.9. We say that a dependent type

B :: ∀(γ : y(Γ)) (a : TmC(A(γ)))→ TyC

has a heterogeneous all-paths operation if we have

pathB : ∀γ (al , ar : TmC(A(γ))) (ae : TmC(IdA(γ, al , ar)))

(bl : TmC(B(γ, al))) (br : TmC(B(γ, ar)))→ DIdA.B(γ, ae, bl , br)). ⌟

We say that a contractibility witness

c :: ∀(γ : y(Γ))→ isContr(A(γ))

has a center or a homogeneous all-paths operations if the type A has a center or a homogeneous all-paths
operations. In that case, it is written c.center or c.hpath.

Similarly, we say that a dependent contractibility witness

c :: ∀(γ : y(Γ)) (a : TmC(A(γ)))→ isContr(B(γ, a))

has a heterogeneous all-paths operations if the dependent type B has one. In that case, it is written c.path.
When c :: ∀γ → isContr((a : A(γ))× B(γ, a)), the type B(γ, a) is typically of the form IdA(γ, a, a0) or

IdA(γ, a0, a) for some a0 : A(γ). In that case, we can think of the center and all-paths operations as specific
cubical composition and filling operations, as described in the following diagrams (where we write −.1 and
−.2 for the first and second projections out of a Σ-type):

a0 c.center.1c.center.2

a0 a0

al ar

bl (c.hpath.2) br

c.hpath.1

Indeed, the first and second projections of the operations center and hpath correspond approximately
to the operations coe, coh, uncoe and uncoh of the cubical type theory without an interval investigated by
Altenkirch and Kaposi (2015).

Theorem 5.10. Assume that C is equipped with the following data:
• A family isContr of contractibility data (definition 5.1);
• Along with reflexive equivalences (Id−, refl−) (definition 5.5);
• Together with dependent equivalences (DId−) (definition 5.6);
• Such that every contractible type has a center (definition 5.7) and all paths (definition 5.8).

Then the identity type introduction structure (Id−, refl−) can be equipped with a weakly stable elimination structure.

Proof. Let A :: y(Γ)→ TyC be a type of C, along with a point x :: ∀γ→ TmC(A(γ)).
Take parameters (∆, γ, P, d) for the weakly stable elimination structure, consisting of:

∆ : C,
γ : ∆→ Γ,

P :: ∀(δ : y(∆))(y : TmC(A(γ(δ))))(p : TmC(IdA(γ(δ), x(γ(δ)), y)))→ TyC ,

d :: ∀(δ : y(∆))→ TmC(P(x(γ(δ)), reflA(γ(δ), x(γ(δ))))).
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We have to construct

j :: ∀(δ : y(∆))(y : TmC(A(γ(δ))))(p : TmC(IdA(γ(δ), x(γ(δ)), y)))→ TmC(P(δ, y, p)),

jβ :: ∀(δ : y(∆))→ TmC(Idδ.P(δ,x(γ(δ)),reflA(γ(δ),x(γ(δ))))(δ, j(δ, x(γ(δ)), reflA(γ(δ), x(γ(δ)))), d(δ))).

We pose S(δ) ≜ (y : A(γ(δ))) × IdA(γ(δ), x(γ(δ)), y); it is the type of the dependency of the mo-
tive P. Since IdA is a reflexive equivalence, S is a family of contractible types, i.e. we have an element
(λδ 7→ IdA.

−→
fun(γ(δ))) of ∀δ→ isContr(S(δ)).

We now see P as a dependent type P :: ∀δ→ TmC(S(δ))→ TyC . We consider the dependent equivalence

DIdS.P :: ∀δ (a, b : TmC(S(δ))) (p : TmC(IdS(δ, a, b)))→ P(δ, a) ≃ P(δ, b).

Since S is contractible and contractible types have all paths, we can specialize DIdS.P to

TS.P :: ∀δ (a, b : TmC(S(δ)))→ P(δ, a) ≃ P(δ, b),

providing a way to transport between different fibers of P.
We can now define j; we pose

a :: ∀δ→ TmC(S(δ)),

a(δ) ≜ (x(γ(δ)), reflA(γ(δ), x(γ(δ)))),
←−−
TS.P : ∀δ→ isContr((d′ : P(δ, a(δ)))× TS.P(δ, a(δ), a(δ), d′, d(δ))),
←−−
TS.P(δ) ≜ TS.P(δ, a(δ), a(δ)).

←−
fun(d(δ)),

d′ : ∀δ→ TmC(P(δ, a(δ))),

d′ ≜
←−−
TS.P.center(δ).1,

−−→
TS.P : ∀δ (b : TmC(S(δ)))→ isContr((j : P(δ, b(δ)))× TS.P(δ, a(δ), b, d′(δ), j)),
−−→
TS.P(δ) ≜ TS.P(δ, a(δ), b(δ)).

−→
fun(d′(δ)),

j : ∀δ→ (b : TmC(S(δ)))→ TmC(P(δ, b(δ))),

j ≜
−−→
TS.P.center(δ, b).1.

Defining j by transporting twice deals with the lack of reflexivity for the dependent equivalences.
It remains to construct an element

jβ :: ∀δ→ Idδ.P(δ,a(δ))(δ, j(δ, a(δ)), d(δ)).

Note that we have elements d̃′ : TS.P(δ, a(δ), a(δ), d′(δ), d(δ)) and j̃ : TS.P(δ, a(δ), a(δ), d′(δ), j(δ, a(δ))).
We consider the dependent type

Q(δ, (y, q)) : ∀δ (y : TmC(P(δ, a(δ)))) (q : TmC(TS.P(δ, a(δ), a(δ), d′(δ), y)))→ TyC ,

Q(δ, (y, q)) :: Idδ.P(δ,a(δ))(δ, y, d(δ)).

The type of such pairs (y, q) is contractible, because TS.P is a dependent equivalence. Therefore, it has all
paths and we obtain a family of equivalences

∀δ→ Q(δ, (d(δ), d̃′)) ≃ Q(δ, (j(δ, a(δ)), j̃)).

The element jβ(δ) is obtained by transporting reflδ.P(δ,a(δ))(δ, d(δ)) over that equivalence. □

We also show that, conversely, any weakly stable identity type structures satisfies the assumptions
of theorem 5.10. For this we need to construct contractibility data that is stable under substitution, that is we
need to strictify the standard definition (definition 2.25) of contractible types.

Construction 5.11. Assume that C is equipped with weakly stable identity types. Then we construct a family
isContr′ : TyC → U such that for every A :: y(Γ)→ TyC , there is a logical equivalence

(∀γ→ isContr′(A(γ)))↔ isContr(A).
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Contruction. We construct isContr′ by cofreely adding naturality to isContr.
We define isContr′ as a dependent presheaf over TyC . For any object Γ : C and element A :: y(Γ)→ TyC , we

let isContr′Γ(A) be the set of functions c that send every morphism ρ : ∆→ Γ to a witness c(ρ) : isContr(A[ρ])
of the contractibility of A[ρ]. For any morphism f : Ω → Γ, element A :: y(Γ) → TyC and element
c : isContr′Γ(A), the restriction c[ f ] sends a morphism ρ : ∆→ Ω to a witness c( f ◦ ρ) of the contractibility of
A[ f ][ρ].

The map isContr′Γ(A)→ isContr(A) is defined by evaluating c at the identity morphism id : Γ→ Γ. The
map isContr(A) → isContr′Γ(A) is defined using the fact that the weakly stable identity types are indeed
weakly stable, providing maps isContr(A)→ isContr(A[ρ]) for any ρ : ∆→ Γ. □

Theorem 5.12. If C is equipped with weakly stable identity types, then the contractibility data constructed in con-
struction 5.11 satisfies the assumptions of theorem 5.10.

Proof. All of the assumptions of theorem 5.10 are standard properties of identity types. □

Remark 5.13. It should be possible to generalize this construction to CwFs without Σ-types by having the
contractibility data quantify over telescopes of types, i.e. isContr : Ty⋆C → U .

6. REFLEXIVE EQUIVALENCES MODELS

In this section, we construct (Σ, Πrep)-CwFs PreReflGraph(C) of pre-reflexive graphs, PreReflEqv(C)
of equivalences with pre-reflexive equivalences and ReflEqv(C) of reflexive equivalences from a given
(Σ, Πrep)-CwF C equipped with suitable contractibility data.

By pre-reflexive graph, we mean a graph together with a family of loops that should be thought of as
reflexive loops, without conditions expressing the existence or the uniqueness of a reflexive loop yet.

For a SOGAT T , the model PreReflEqv(T ) will be used to prove external univalence for T by constructing
identity types over T in section 7.

The (Σ, Πrep)-CwF PreReflGraph(C) is an instance of an inverse diagram model (Kapulkin and Lums-
daine 2021), indexed by the inverse category

PreReflGraph ≜

 R E Ve

c

l

r

 ,

where l ◦ e = c = r ◦ e, although we present it syntactically, rather than diagrammatically.
The inverse diagram PreReflGraph is an inverse replacement (Kraus and Sattler 2017) of the diagram

ReflGraph ≜

 E V
l

r
e


that indexes the presheaf category of reflexive graphs.

The (Σ, Πrep)-CwFs PreReflEqv(C) of pre-reflexive equivalences and ReflEqv(C) of reflexive equiva-
lences are homotopical inverse diagram models over the same base category PreReflGraph, with different
sets of morphisms marked as equivalences. The types of PreReflEqv(C) and ReflEqv(C) will be types
of PreReflGraph(C) along with some additional contractibility conditions for every marked arrow. For
PreReflEqv(C), the arrows l and r are marked, while for ReflEqv(C), the arrows l, r and c are marked.

The CwF ReflEqv(C) of reflexive equivalences is essentially the same as the CwA of trivial auto-span-
equivalences from Kapulkin and Lumsdaine (2018).

We fix a (Σ, Πrep)-CwF C for the whole section.

6.1. The category of pre-reflexive graphs.

Definition 6.1. We define a category PreReflGraph(C) of pre-reflexive graphs in C.
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• An object Γ of PreReflGraph(C) is a triple (ΓV , ΓE, ΓR) where

ΓV :: ObC ,

ΓE :: ∀(γl , γr : y(ΓV))→ TyC ,

ΓR :: ∀(γ : Γ) (γe : TmC(ΓE(γ, γ)))→ TyC .

We can see ΓV as a type of vertices, ΓE as a dependent type of edges and ΓR as a dependent type
of marked loops, which should be thought of as the reflexivity edges.
• A morphism f from Γ to ∆ is a triple ( fV , fE, fR) where

fV :: ΓV → ∆V ,

fE :: ∀(γl , γr : y(ΓV)) (γe : TmC(ΓE(γl , γr)))→ TmC(∆E( fV(γl), fV(γr))),

fR :: ∀(γ : y(ΓV)) (γe : TmC(ΓE(γ, γ))) (γr : TmC(ΓR(γ, γe)))→ TmC(∆R( fV(γ), fE(γe))).

• Identities and compositions are defined in the evident way. ⌟

We could instead define PreReflGraph(C) as the (non-equivalent) diagram category CPreReflGraph. Using
the more syntactic definition helps with computations in our applications.

6.2. Reedy types.

Definition 6.2. A Reedy type A, or dependent pre-reflexive graph A, over an object Γ : PreReflGraph(C)
is a triple (AV , AE, AR) where

AV :: ∀(γ : y(ΓV))→ TyC ,

AE :: ∀γl γr (γe : TmC(ΓE(γl , γr))) (al : TmC(AV(γl))) (ar : TmC(AV(γr)))→ TyC ,

AR :: ∀γ γe (γr : TmC(ΓR(γ, γe))) (a : TmC(AV(γ))) (ae : TmC(AE(γe, a, a)))→ TyC .

The substitution of a Reedy-type A along a morphism f : ∆ → Γ in PreReflGraph(C) is defined by
composition with the components of f :

A[ f ]V ≜ λδ 7→ AV( fV(δ)),

A[ f ]E ≜ λδe al ar 7→ AE( fE(δe), al , ar),

A[ f ]R ≜ λδr a ae 7→ AR( fR(δr, a, ae)).

The functoriality of this definition is easy to check; it follows from the associativity of function composition.
⌟

Definition 6.3. The representable Reedy types are defined in the same way: a representable Reedy type
A, or representable dependent pre-reflexive graph A, over an object Γ : PreReflGraph(C) is a triple
(AV , AE, AR) where

AV :: ∀(γ : y(ΓV))→ RepTyC ,

AE :: ∀γl γr (γe : TmC(ΓE(γl , γr))) (al : TmC(AV(γl))) (ar : TmC(AV(γr)))→ RepTyC ,

AR :: ∀γ γe (γr : ΓR(γ, γe)) (a : TmC(AV(γ))) (ae : TmC(AE(γe, a, a)))→ RepTyC .

In particular, any representable Reedy type can be seen as a Reedy type by applying the map RepTyC → TyC
to all components. ⌟

Definition 6.4. A term of a Reedy type A over Γ : PreReflGraph(C) is a triple (aV , aE, aR) where

aV :: ∀(γ : y(ΓV))→ TmC(AV(γ)),

aE :: ∀γl γr (γe : TmC(ΓE(γl , γr)))→ TmC(AE(γe, aV(γl), aV(γr))),

aR :: ∀γ γr (γr : TmC(ΓR(γ, γe)))→ TmC(AR(γr, aV(γ), aE(γe))).

The substitution of a term of a Reedy type along a morphism in PreReflGraph(C) is also defined by
composition with the components of f .
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The extension of a context Γ by a type A is the context

(Γ.A)V ≜ ΓV .AV ,

(Γ.A)E((γl , al), (γr, ar)) ≜ (γe : ΓE(γl , γr))× (AE(γe, al , ar)),

(Γ.A)R((γ, a), (γe, ae)) ≜ (γr : ΓR(γ, γe))× (AR(γr, a, ae)).

It can be checked that this definition satisfies the required universal property. ⌟

Construction 6.5. We equip the Reedy types and the representable Reedy types with 1- and Σ- types as
follows:

1V ≜ λγ 7→ 1,

1E ≜ λγe tl tr 7→ 1,

1R ≜ λγr t te 7→ 1,

(Σ(A, B))V ≜ λγ 7→ (a : AV(γ))× (b : BV(γ, a))

(Σ(A, B))E ≜ λγe (al , bl) (ar, br) 7→ (ae : AE(γe, al , ar))× (be : BE((γe, ae), bl , br))

(Σ(A, B))R ≜ λγr (a, b) (ae, be) 7→ (ar : AR(γr, a, ae))× (br : Br((γr, ar), b, be)).

It is straightforward to check that these definitions are natural and satisfy the universal properties of 1-
and Σ- types. ⌟

Construction 6.6. We equip the Reedy types with Π-types with arities in the representable Reedy types as
follows:

(Π(A, B))V ≜ λγ 7→ (a : AV(γ))→ BV(γ, a)

(Π(A, B))E ≜ λγe fl fr 7→ ∀al ar (ae : AE(γe, al , ar))→ BE((γe, ae), fl(al), fr(ar)),

(Π(A, B))R ≜ λγr f fe 7→ ∀a ae (ar : AR(γr, a, ae))→ Br((γr, ar), f (a), fe(ae)).

Checking the naturality of this definition is straightfoward, and checking the universal property of the
Π-types is a matter of unfolding the definitions. ⌟

To summarize, we have described the following construction.

Construction 6.7. If C is a (Σ, Πrep)-CwF, then the category PreReflGraph(C) is equipped with the struc-
ture of a (Σ, Πrep)-CwF whose types are the Reedy types (definition 6.2), and the projection functor V :
PreReflGraph(C)→ C extends to a morphism of (Σ, Πrep)-CwFs. ⌟

6.3. Homotopical Reedy types. Now assume that the (Σ, Πrep)-CwF C is equipped with contractibility
data, i.e. with families isContr and isContrrep over its types and representable types, along with a map
isContrrep(A)→ isContr(A) for any A : RepTyC .

Definition 6.8. A {l, r}-homotopical Reedy type, or dependent pre-reflexive equivalence is a Reedy type
A over Γ : PreReflGraph(C) that satisfies the following two contractibility conditions:

A.
−→
fun : ∀γl γr (γe : ΓE(γl , γr)) (al : AV(γl))→ isContr((ar : AV(γr))× AE(γe, al , ar)),

A.
←−
fun : ∀γl γr (γe : ΓE(γl , γr)) (ar : AV(γr))→ isContr((al : AV(γl))× AE(γe, al , ar)).

A representable dependent pre-reflexive equivalence is a representable Reedy type that satisfies:

A.
−→
fun : ∀γl γr (γe : ΓE(γl , γr)) (al : AV(γl))→ isContrrep((ar : AV(γr))× AE(γe, al , ar)),

A.
←−
fun : ∀γl γr (γe : ΓE(γl , γr)) (ar : AV(γr))→ isContrrep((al : AV(γl))× AE(γe, al , ar)).

The action of morphism f : ∆ → Γ in PreReflGraph a on a dependent pre-reflexive equivalence A is
defined by composition with the components of f . ⌟

In other words, a Reedy type is {l, r}-homotopical when it determines a dependent equivalence in the
sense of definition 5.4.
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Definition 6.9. A {l, r, c}-homotopical Reedy type, or dependent reflexive equivalence is a dependent
pre-reflexive equivalence A over Γ : PreReflGraph(C) that satisfies the following additional contractibility
conditions:

A.refl : ∀γ (γe : ΓE(γ, γ)) (γr : ΓR(γ, γe)) a→ isContr((ae : AE(γe, a, a))× AR(γr, a, ae)).

A representable dependent reflexive equivalence is a representable dependent pre-reflexive equivalence
that satisfies:

A.refl : ∀γ (γe : ΓE(γ, γ)) (γr : ΓR(γ, γe)) a→ isContrrep((ae : AE(γe, a, a))× AR(γr, a, ae)).

We identify a collection of closure conditions on isContrrep and isContr that ensure that the 1-, Σ- and Π-
type formers of PreReflGraph(C) lift from the dependent pre-reflexive graphs to the dependent pre-reflexive
equivalences.

Lemma 6.10. Assume that the contractibility data is closed under the following operations:

contrrep1 : isContrrep(1× 1),

contrrepΣ : ∀(A : RepTyC) (B : ∀a→ RepTyC) (C : ∀a→ RepTyC) (D : ∀a b c→ RepTyC)

→ isContrrep((a : A)× B(a))

→ (∀a b→ isContrrep((c : C(a))× D(a, b, c)))

→ isContrrep(((a : A)× (c : C(a)))× ((b : B(a))× D(a, b, c))),

contrrep∼= : ∀(A, B : RepTyC)

→ (TmC(A) ∼= TmC(B))→ isContrrep(A)

→ isContrrep(B),

contr1 : isContr(1× 1),

contrΣ : ∀(A : TyC) (B : ∀a→ TyC) (C : ∀a→ TyC) (D : ∀a b c→ TyC)

→ isContr((a : A)× B(a))

→ (∀a b→ isContr((c : C(a))× D(a, b, c)))

→ isContr(((a : A)× (c : C(a)))× ((b : B(a))× D(a, b, c))),

contr∼= : ∀(A, B : TyC)

→ (TmC(A) ∼= TmC(B))→ isContr(A)

→ isContr(B),

contrΠ : ∀(X : RepTyC) (Y : TmC(X)→ RepTyC)

→ (∀x → isContrrep(Y(x)))

→ (A : TmC(X)→ TyC)

→ (B : (x : TmC(X))→ TmC(Y(x))→ TmC(A(x))→ TyC)

→ (∀x y→ isContr((a : A(x))× B(x, y, a)))

→ isContr((a : (x : X)→ A(x))

× ((x : X)→ (y : Y(x))→ B(x, y, a(x)))). ⌟

Then the 1-, Σ- and Π- type structures lift from PreReflGraph(C) to PreReflEqv(C), for both types and
representable types.

Proof. We need to check two contractibility conditions for each type former.
Case 1: We have to check the following two contractibility conditions:

∀γl γr γe tl → isContr(1× 1),

∀γl γr γe tr → isContr(1× 1).
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They are both instances of contr1, or contrrep1 in the case of representable Reedy types.
Case Σ: We have a dependent pre-reflexive equivalence A over Γ and a dependent pre-reflexive equiv-

alence B over (Γ.A).
In order to check that the Reedy type Σ(A, B) is a dependent pre-reflexive equivalence, we have

to check the following two contractibility conditions:

∀γl γr γe (al , bl) → isContr(((ar : AV(γr))× (br : BV(γr, ar)))

× ((ae : AE(γe, al , ar))× (be : BE((γe, ae), bl , br)))),

∀γl γr γe (ar, br)→ isContr(((al : AV(γl))× (bl : BV(γl , al)))

× ((ae : AE(γe, al , ar))× (be : BE((γe, ae), bl , br)))).

They both follow from isContrΣ and from the contractibility conditions of A and B.
In the case of representable Reedy types, we use isContrrepΣ instead.

Case Π: We have a representable dependent pre-reflexive equivalence A over Γ and a dependent
pre-reflexive equivalence B over (Γ.A).

In order to check that the Reedy type Π(A, B) is a dependent pre-reflexive equivalence over Γ, we
have to check the following two contractibility conditions:

∀γl γr γe fl → isContr(( fr : ∀ar → BV(γr, ar))

× ( fe : ∀al ar ae → BE((γe, ae), fl(al), fr(ar)))),

∀γl γr γe fr → isContr(( fl : ∀al → BV(γl , al))

× ( fe : ∀al ar ae → BE((γe, ae), fl(al), fr(ar)))).

Up to type isomorphism, the first contractibility condition is an instance of contrΠ, whose argu-
ments (X, Y, A, B) are instantiated to:

X = AV(γr),

Y(ar) = (al : AV(γl))× (ae : AE(γe, al , ar)),

A(ar) = BV(γr, ar),

B(ar, (al , ae), br) = BE((γe, ae), fl(al), fr(ar)).

Relying on type isomorphisms is allowed thanks to the operations contrrep∼= and contr∼=.
Up to symmetry, the second contractibility condition is similar the first one. □

Construction 6.11. Let C be a (Σ, Πrep)-CwF equipped with operations satisfying the specification of lemma 6.10.
Then there is a (Σ, Πrep)-CwF PreReflEqv(C) whose types are the dependent pre-reflexive equivalences
as defined in definition 6.8. There is a (Σ, Πrep)-CwF PreReflEqv(C) → PreReflGraph(C) lying over the
identity functor that forgets the contractibility witnesses of the dependent pre-reflexive equivalences. ⌟

Lemma 6.12. Assume that the contractibility data is closed under the operations of lemma 6.10 and the additional
operation

contrΠ,refl : ∀(X : RepTyC) (Y : TmC(X)→ RepTyC) ((Z : TmC(X)→ RepTyC))

→ (∀x → isContrrep(Y(x)))

→ (∀x → isContrrep(Z(x)))

→ ( f : ∀x → TmC(Y(x))→ TmC(Z(x)))

→ (A : (x : TmC(X))→ TmC(Z(x))→ TyC)

→ (B : (x : TmC(X))→ (y : TmC(Y(x)))→ TmC(A(x, f (x, y)))→ TyC)

→ (∀x y→ isContr((a : A(x, f (x, y)))× B(x, y, a)))

→ isContr((a : (x : X)→ (z : Z(x))→ A(x, z))

× ((x : X)→ (y : Y(x))→ B(x, y, a(x, f (y))))). ⌟
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Then the 1-, Σ- and Π- type structures lift from PreReflEqv(C) to ReflEqv(C), for both types and representable
types.

Proof. We need to check one contractibility condition for each type former.
Case 1: We have to check the following contractibility condition:

∀γ γe γr t→ isContr(1× 1).

This is an instance of contr1, or contrrep1 in the case of representable Reedy types.
Case Σ: We have a dependent reflexive equivalence A over Γ and a dependent reflexive equivalence B

over (Γ.A).
In order to check that the Reedy type Σ(A, B) is a dependent reflexive equivalence, we have to

check the following contractibility condition:

∀γ γe γr (a, b)→ isContr(((ae : AE(γe, a, a))× (be : BE((γe, ae), b, b)))

× ((ar : AR(γr, a, ae))× (br : BR((γr, ar), b, be)))).

It follows from isContrΣ (or isContrrepΣ ) and from the contractibility conditions of A and B.
Case Π: We have a representable dependent reflexive equivalence A over Γ and a dependent reflexive

equivalence B over (Γ.A).
In order to check that the Reedy type Π(A, B) is a dependent reflexive equivalence, we have to

check the following contractibility condition:

∀γ γe γr f → isContr(( fe : ∀al ar (ae : AE(γe, al , ar))→ BE((γe, ae), f (al), f (ar)))

× ( fr : ∀a ae (ar : AR(γr, a, ae))→ BR((γr, ar), f (a), fe(ae)))).

Up to type isomorphism, this contractibility condition is an instance of contrΠ,refl, whose argu-
ments (X, Y, Z, f , A, B) are instantiated to:

X = AV(γ),

Y(a) = (ae : AV(γe, a, a))× (ar : AR(γr, a, ae)),

Z(a) = (ar : AV(γ))× (ae : AE(γe, a, ar)),

f (a, (ae, ar)) = (a, ae),

A(a, (ar, ae)) = BE((γe, ae), f (a), f (ar)),

B(a, (ae, ar), br) = BR((γr, ar), f (a), fe(ae)). □

Construction 6.13. Let C be a (Σ, Πrep)-CwF equipped with operations satisfying the specifications of lemma 6.10
and lemma 6.12. Then there is a (Σ, Πrep)-CwF ReflEqv(C) whose types are the dependent reflexive equiva-
lences as defined in definition 6.8. There is a (Σ, Πrep)-CwF ReflEqv(C)→ PreReflEqv(C) lying over the
identity functor that forgets the additional contractibility conditions of dependent reflexive equivalences. ⌟

6.4. Parametricity structures. We now use the pre-reflexive graph and homotopical pre-reflexive graphs
models to specify notions of parametricity structures over (Σ, Πrep)-CwFs.

Definition 6.14. A parametricity structure for a (Σ, Πrep)-CwF C is a section J−K of the projection morphism
V : PreReflGraph(C)→ C.

A {l, r}-homotopical parametricity structure for a (Σ, Πrep)-CwF C that is equipped with contractibility
data and satisfies the closure conditions of lemma 6.10 is a section J−K of the projection morphism V :
PreReflEqv(C)→ C. ⌟

Definition 6.15. Let C be a (Σ, Πrep)-CwF equipped with a parametricity structure J−K.
A reflexivity operation for an object Γ : C consists of:

reflE
Γ :: ∀(γ : y(Γ))→ TmC(JΓKE(γ, γ)),

reflR
Γ :: ∀(γ : y(Γ))→ TmC(JΓKR(γ, reflE

Γ (γ))).
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A reflexivity operation for a type A :: y(Γ)→ TyC consists of:

reflE
A :: ∀(γ : y(Γ)) (γe : TmC(JΓKE(γ, γ))) (γr : TmC(JΓKR(γ, γe)))

(a : TmC(A(γ)))→ TmC(JAKE(γe, a, a)),

reflR
A :: ∀(γ : y(Γ)) (γe : TmC(JΓKE(γ, γ))) (γr : TmC(JΓKR(γ, γe)))

(a : TmC(A(γ)))→ TmC(JAKR(γr, a, reflE
A(γr, a))).

A reflexivity structure over C consists of reflexivity operations for all objects and types of C. ⌟

Proposition 6.16. If C is a contextual (Σ, Πrep)-CwF that is equipped with reflexivity operations for all types, then it
is also equipped with reflexivity operations for all objects, and thus of a reflexivity structure.

Proof. By induction on the contexts of C, we pose

reflE
⋄ (⋆) ≜ ⋆,

reflR
⋄ (⋆) ≜ ⋆,

reflE
Γ.A(γ, a) ≜ (reflE

Γ (γ), refl
E
A(γ, reflE

Γ (γ), refl
R
Γ (γ), a)),

reflR
Γ.A(γ, a) ≜ (reflR

Γ (γ), refl
R
A(γ, reflE

Γ (γ), refl
R
Γ (γ), a)). □

We now fix a (Σ, Πrep)-CwF C equipped with contractibility data and with a homotopical parametricity
structure J−K, along with a reflexivity structure.

We can then equip it with reflexive equivalences (definition 5.3) and with dependent equivalences
(definition 5.4):

IdA(γ, al , ar) ≜ JAK(reflE
Γ (γ), al , ar),

reflA(γ, a) ≜ reflE
A(refl

E
Γ (γ), refl

R
Γ (γ), a),

DIdA.B(γ, al , ar, ae, bl , br) ≜ JBK((reflE
Γ (γ), ae), bl , br).

Our goal is now to investigate the remaining assumption of theorem 5.10. We prove some lemmata
showing that center and homogeneous all-paths operations are preserved by the operations of lemma 6.10,
under some additional hypothesis for some of the operations. These lemmata will be needed in section 7.

Construction 6.17. Let Ty′C ↪→ TyC be a subfamily of the family of types such that:
• for every X :: y(Γ) → Ty′C , the contractibility witnesses of the homotomical Reedy type JXK are

equipped with centers.
• for every X :: y(Γ)→ Ty′C , the dependent types JXKE and JXKR are dependent types in Ty′C , i.e. they

factor through Ty′C ↪→ TyC .
Let A :: y(Γ)→ Ty′C be a global type and B :: (γ : y(Γ))→ (a : TmC(A(γ)))→ Ty′C be a global dependent

types. If we have a homogeneous all-paths operation for B over Γ.A, then we construct a heterogeneous
all-paths operation for B.

Proof. We have to define

B.path :: ∀γ (al , ar : TmC(A(γ))) (ae : TmC(IdA(γ, al , ar)))

(bl : TmC(B(γ, al))) (br : TmC(B(γ, ar)))→ TmC(DIdA.B(γ, ae, bl , br)).

We first transport br through the equivalence DIdA.B(γ, ae) : B(γ, al) ≃ B(γ, ar).
←−
TB(γ, ae, br) : isContr((b′l : B(γ, al))× (b′e : DIdA.B(γ, ae, b′l , br))),
←−
TB(γ, ae, br) ≜ DIdA.B(γ, ae).

←−
fun(br),

(b′l(γ, ae, br), b′e(γ, ae, br)) ≜
←−
TB.center(γ, ae, br),

where the center can be obtained thanks to our first assumption about Ty′C .
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Now, using the homogeneous all-paths operation for B at al , we obtain a homogeneous path between bl
and b′l .

b′′e (γ, ae, bl , br) : IdB(γ,al)
(γ, bl , b′l),

b′′e (γ, ae, bl , br) ≜ B.hpath((γ, al), bl , b′l).

It remains to compose the homogeneous path b′′e with the homogeneous path b′e.

IB(γ, ae, br)(bl) ≜ DIdA.B(γ, ae, bl , br),

TI(γ, ae, bl , br) : IB(γ, ae, br)(bl) ≃ IB(γ, ae, br)(b′l),

TI(γ, ae, bl , br) ≜ DIdB.IB((γ, ae, br), b′′e ),
←−
TI (γ, ae, bl , br) : isContr((be : IB(γ, ae, br)(bl))× · · · ),
←−
TI (γ, ae, bl , br) ≜ TI(γ, ae, bl , br).

←−
fun(b′′e (γ, ae, bl , br)),

(be(γ, ae, bl , br), _) ≜
←−
TI .center(γ, ae, bl , br),

where the center can be obtained thanks to our first assumption about Ty′C and the fact that the dependent
type IB lands in Ty′C .

We can finally pose:

B.path(γ, ae, bl , br) ≜ be(γ, ae, bl , br). □

Construction 6.18. Let A, B :: y(Γ)→ TyC be two types related by an isomorphism α : ∀γ→ TmC(A(γ)) ∼=
TmC(B(γ)).

If A is equipped with a center operation (resp. with a homogeneous all-paths operations), then we equip
B with a center operation (resp. with a homogeneous all-paths operations).

Proof. Equipping B with a center operation is straightforward:

B.center(γ) ≜ α(γ, A.center(γ));

For the homogeneous all-paths operations, we show that the isomorphism α lifts an isomorphism between
IdA and IdB.

We have JαKE : ∀γl γr γe al ar → TmC(JAKE(γe, al , ar)) ∼= TmC(JBKE(γe, α(γl , al), α(γr, ar))). Thus
JαKE(refl

E
Γ (γ)) : ∀al ar → TmC(IdA(γ, al , ar)) ∼= TmC(IdB(γ, α(γ, al), α(γ, ar))) is an isomorphism between

IdA and IdB.
We can now pose

B.hpath(γ, bl , br) ≜ JαEK(reflE
Γ (γ), A.hpath(γ, α−1(γ, bl), α−1(γ, br))). □

Construction 6.19. The type 1× 1 has center and homogeneous all-paths operations over any context Γ : C.

Proof. The center is (tt, tt) over any context.
By definition of 1- and Σ- types in PreReflGraph(C), we compute Id1×1(γ,−,−) = J1× 1KE(· · · ) = 1× 1.

Thus the homogeneous all-paths operations can also be defined by (tt, tt) over any context. □

Construction 6.20. Assume given the data of:

Γ : C,

A :: ∀γ→ TyC ,

B :: ∀γ a→ TyC ,

C :: ∀γ a→ TyC ,

D :: ∀γ a b c→ TyC ,
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along with center operations for the types

(a : A(γ))× B(γ, a)

over (γ : y(Γ)) and
(c : C(γ, a))× D(γ, a, b, c)

over ((γ, a, b) : y(Γ.A.B)).
We construct an center over (γ : y(Γ)) for the type

((a : A(γ))× (b : B(γ, a)))× ((c : C(γ, a))× (d : D(γ, a, b, c))).

Construction. We write AB ≜ (a : A(γ))× B(γ, a), etc.
From our hypotheses, we have

⟨a, b⟩(γ) ≜ centerAB(γ),

⟨c, d⟩(γ) ≜ centerCD(γ, ab(γ)).

Thus we can pose

centerABCD(γ) ≜ ((a(γ), c(γ)), (b(γ), d(γ))). □

Construction 6.21. Assume given the data of:

Γ : C,

A :: ∀γ→ TyC ,

B :: ∀γ a→ TyC ,

C :: ∀γ a→ TyC ,

D :: ∀γ a b c→ TyC ,

along with a homogeneous all-paths operation for the type

(a : A(γ))× B(γ, a)

over (γ : y(Γ)) and a heterogeneous all-paths operation for the dependent type

(a, b) 7→ (c : C(γ, a))× D(γ, a, b, c)

over (γ : y(Γ)).
We construct a homogeneous all-paths operation over (γ : y(Γ)) for the type

((a : A(γ))× (b : B(γ, a)))× ((c : C(γ, a))× (d : D(γ, a, b, c))).

Construction. We pose AB ≜ (a : A(γ))× B(γ, a), etc. We also write ab instead of (a, b), etc.
Our goal is to define

hpathABCD : ∀γ acbdl acbdr → IdACBD(acbdl , acbdr).

We pose

abe(γ, abl , abr) ≜ hpathAB(γ, abl , abr),

cde(γ, acbdl , acbdr) ≜ pathCD(γ, abe, cdl , cdr).

Thus, we can define

hpathABCD(γ, acbdl , acbdr) ≜ acbde(γ, acbdl , acbdr). □

Construction 6.22. Also assume given the data of:

Γ : C,

X :: y(Γ)→ RepTyC ,

Y :: ∀γ→ TmC(X(γ))→ RepTyC ,
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cY :: ∀γ x → isContrrep(Y(γ, x)),

A :: ∀γ→ TmC(X(γ))→ TyC ,

B :: ∀γ (x : TmC(X(γ))) (y : TmC(Y(γ, x)))→ TmC(A(γ, x))→ TyC ,

along with a center operation for the type

AB(γ) ≜ (a : A(γ, x))× B(γ, x, y, a)

over ((γ, x, y) : y(Γ.X.Y)).
We construct an center over (γ : y(Γ)) for the type

(a : (x : X(γ))→ A(γ, x))× (b : (x : X(γ))→ (y : Y(γ, x))→ B(γ, x, y, a(x))).

Construction. Our goal is to define the following:

centerΠ(γ) : (a : (x : X(γ))→ A(γ, x))

× (b : (x : X(γ)) (y : Y(γ, x))→ B(γ, x, y, a(x))).

Since Y is a family of contractible representable types, we can find its centers of contraction.

y0(γ, x) ≜ centerY(γ, x),

We then obtain elements of A from the centers of contraction of AB.

a(γ, x) : A(γ, x),

b0(γ, x) : B(γ, x, y0(γ, x), a(γ, x)),

(a(γ, x), b0(γ, x)) ≜ centerAB(γ, x, y0(γ, x)).

We then want to transport b0 over paths in Y, using the fact that Y has all paths. We start by computing
paths from y0 to any element in Y.

pY(γ, x, y) : IdY[x](γ, y0(x), y),

pY(γ, x, y) ≜ hpathY((γ, x), y0(γ, x), y).

We now consider the transport of b0 over pY.

TB(γ, x, y) : B(γ, x, y0(γ, x), a(γ, x)) ≃ B(γ, x, y, a(γ, x)),

TB(γ, x, y) ≜ DId(y:Y).B(γ,x,y,a(γ,x))((γ, x), pY(γ, x, y)),
−→
TB(γ, x, y) : isContr((b : B(γ, x, y, a(γ, x)))× · · · ),
−→
TB(γ, x, y) ≜ TB(γ, x, y).

−→
fun(b0(γ, x)),

b(γ, x, y) ≜
−→
TB.center(γ, x, y).

We can now conclude the definition:

centerΠ(γ) ≜ (λx 7→ a(γ, x), λx y 7→ b(γ, x, y)). □

Construction 6.23. Assume that the weakly stable identity type introduction structure Id− on RepTyC can be
equipped with a weakly stable elimination structure.

Also given the data of:

Γ : C,

X :: y(Γ)→ RepTyC ,

Y :: ∀γ→ TmC(X(γ))→ RepTyC ,

A :: ∀γ→ TmC(X(γ))→ TyC ,

B :: ∀γ (x : TmC(X(γ))) (y : TmC(Y(γ, x)))→ TmC(A(γ, x))→ TyC ,
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along with a heterogeneous all-paths operation for the dependent type

AB ≜ (x, y) 7→ (a : A(γ, x))× B(γ, x, y, a)

over (γ : y(Γ)).
We construct a homogeneous all-paths operation over (γ : y(Γ)) for the type

(a : (x : X(γ))→ A(γ, x))× (b : (x : X(γ))→ (y : Y(γ, x))→ B(γ, x, y, a(x))).

Construction. We write ab instead of (a, b), alr instead of (al , ar), etc.
Our goal is to define the following:

hpathΠ(γ, abl , abr) : (ae : ∀xlre → JAKE((reflΓ(γ), xe), al(xl), ar(xr)))

× (be : ∀xlre ylre → JBKE((reflΓ(γ), xe, ye, ae(xe)), bl(xl , yl), br(xr, yr))).

Since Y is a family of contractible representable types, we can find paths in Y over any path in X.

y0(γ, x) ≜ centerY(γ, x),

y0e(γ, xlre) : JYKE((reflΓ(γ), xe), y0(γ, xl), y0(γ, xr)),

y0e(γ, xlre) ≜ Jy0KE(reflΓ, xe).

Now using the heterogeneous all-paths operation of AB, we obtain paths in A over any path in X.

ae(γ, ablr, xlre) : JAKE((reflΓ(γ), xe), al(xl), ar(xr)),

b0e(γ, ablr, xlre) : JBKE((reflΓ(γ), xe, ye, ae(γ, alr, xlre)), bl(xl , y0(γ, xl)), br(xr, y0(γ, xr))),

⟨ae, b0e⟩(γ, ablr, xlre) ≜ pathAB(γ, xe, y0e(γ, xlre), abl(xl , y0(γ, xl)), abr(xr, y0(γ, xr))).

In order to define be, we transport b0e over squares in Y. These squares are constructed using the fact that
Y is contractible; since we already know that Id− on representable types has a weakly stable elimination
structure, we omit the precise construction of these squares.

sY(γ, xlre, ylre) : IdIdY ((γ, yl , yr), y0e(γ, xe), ye).

We can now transport b0e over sY.

IB(γ, xlre, alre, ylr, blr, ye) ≜ JBK((reflΓ(γ), xe, ye, ae), bl , br),

TIB(γ, ablr, xlre, ylre) : IB(γ, xlre, ae(γ, ablr, xlre), bl(xyl)), br(xyr), y0e(γ, xlre))

≃ IB(γ, xlre, ae(γ, ablr, xlre), bl(xyl), br(xyr), ye),

TIB(x, y) ≜ DIdIB(. . . , sY(γ, xlre, ylre)),
−→
TIB(γ, ablr, xlre, ylre) : isContr((be : IB(γ, ablr, xlre, ylre))× · · · ),
−→
TIB(γ, ablr, xlre, ylre) ≜ TIB(γ, ablr, xlre, ylre).

−→
fun(b0e(γ, ablr, xlre)),

be(γ, ablr, xlre, ylre) : JBK((reflΓ(γ), xe, ye, ae(γ, ablr, xe)), bl(xyl), br(xyr)),

be(γ, ablr, xlre, ylre) ≜
−→
TIB .center(γ, ablr, xe, ye).1.

Finally, we can pose

hpathΠ(γ, ablr) ≜ (λxlre 7→ ae(γ, alr, xlre), λxlre ylre 7→ be(γ, ablr, xlre, ylre)). □

7. PROVING EXTERNAL UNIVALENCE

We fix a SOGAT T equipped with homotopy relations. Our goal is to prove that T satisfies external
univalence, that is to equip the (Σ, Πrep)-CwF T with weakly stable identity types satisfying function
extensionality and saturation with respect to the homotopy relations of T . In this section we essentially
give a construction of this data (the weakly stable identity types) from the facts that every operation of T
preserves the homotopy relations, and that the homotopy relations are equipped with some operations which
essentially say that the homotopy relations should be reflexive and admit fillers of 1- and 2- dimensional
cubes. More precisely, we rely on theorem 5.10 to construct the identity types, and the constructions
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of section 6 to satisfy the hypothesis of theorem 5.10, that is to construct reflexive equivalences and dependent
equivalences with respect to some contractibility data, such that the contractible types have centers and
all-paths operations.

7.1. Internal model in reflexive equivalences.

Assumption (A1). We assume given a parametricity structure on T , i.e. a section

J−K : T → PreReflGraph(T )

of the projection map V. ⌟

By the universal property of T , this amounts to equipping PreReflGraph(T ) with an internal model of
T that is displayed over T .

Concretely, we have to interpret the sorts, operations and equations of T in PreReflGraph(T ). The sorts
have to be interpreted by Reedy types, which are typically given by the homotopy relations (∼), up to the
fact that the Reedy types are more dependent than the homotopy relations. The representable sorts have to
be interpreted by representable Reedy types.

Then to give an interpretation of an operation, we exactly need to show that it preserves the homotopy
relations.

Depending on the theory T , ensuring that the equations of T are satisfied in this model may be quite
tricky. When T is a type theory with the usual β- and η- equalities, we have to use the relational definition of
equivalences (example 4.3). While other definitions (such as half-adjoints equivalences, etc.) are equivalent
up to homotopy, they do not seem to satisfy the necessary computational properties for this construction.

7.2. Contractibility data. We define the following inductive families, internally to Psh(T ).

isContrrep,b, isContrb, isContrrep, isContr : RepTyT → U .

The families isContrrep,b and isContrb describe the basic contractible types. We introduce them so as to be
able to state our last assumption later (assumption (A3)). The family isContrb is generated by the following
(non-recursive) constructors, for every generating type S : GenTyT :

contrS,l : ∀(σl , σr : ∂S) (σe : J∂SKE(σl , σr)) (al : S(σl))

→ isContr((ar : S(σr))× JSKE(σe, al , ar)),

contrS,r : ∀(σl , σr : ∂S) (σe : J∂SKE(σl , σr)) (ar : S(σr))

→ isContr((al : S(σl))× JSKE(σe, al , ar)),

contrS,∼ : ∀(σ : ∂S) (x : S(σ))

→ isContr((y : S(σ))× (x ∼S(σ) y)).

The constructor contrS,∼ is included to make sure that we construct identity types satisfying saturation with
respect to the homotopy relations (∼). The family isContrrep,b is generated by the same constructors, but
restricted to representable types. This means that the constructors contrS,l , contrS,r and contrS,∼ are only
included for S : GenRepTyT . There is an evident map isContrrep,b(A)→ isContrb(A) for A : RepTyT .

The family isContrrep is inductively generated by the following constructors:

contrrepb : ∀A→ isContrrep,b(A)→ isContrrep(A),

contrrep1 : isContrrep(1× 1),

contrrepΣ : ∀(A : RepTyT ) (B : ∀a→ RepTyT ) (C : ∀a→ RepTyT ) (D : ∀a b c→ RepTyT )

→ isContrrep((a : A)× B(a))

→ (∀a b→ isContrrep((c : C(a))× D(a, b, c)))

→ isContrrep(((a : A)× (c : C(a)))× ((b : B(a))× D(a, b, c))),

contrrep∼= : ∀(A, B : RepTyT )→ (TmT (A) ∼= TmT (B))→ isContrrep(A)→ isContrrep(B),
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The family isContr : TyT → U is inductively generated by the following constructors:

contrrep : ∀A→ isContrrep(A)→ isContr(A),

contrb : ∀A→ isContrb(A)→ isContr(A),

contr1 : isContr(1× 1),

contrΣ : ∀(A : TyT ) (B : ∀a→ TyT ) (C : ∀a→ TyT ) (D : ∀a b c→ TyT )

→ isContr((a : A)× B(a))

→ (∀a b→ isContr((c : C(a))× D(a, b, c)))

→ isContr(((a : A)× (c : C(a)))× ((b : B(a))× D(a, b, c))),

contr∼= : ∀(A, B : TyT )→ (TmT (A) ∼= TmT (B))→ isContr(A)→ isContr(B),

contrΠ : ∀(X : RepTyT ) (Y : X → RepTyT )

→ (∀x → isContrrep(Y(x)))

→ (A : X → TyT )

→ (B : (x : X)→ (y : Y(x))→ A(x)→ TyT )

→ (∀x y→ isContr((a : A(x))× B(x, y, a)))

→ isContr((a : (x : X)→ A(x))

× ((x : X)→ (y : Y(x))→ B(x, y, a(x)))).

Now that we have defined this contractibility data, we observe that it is equipped, by definition, with
the operations of lemma 6.10. Thus construction 6.11 provides the pre-reflexive equivalences model
PreReflEqv(T ) with respect to this contractibility data.

Lemma 7.1. The section J−K : T → PreReflGraph(T ) factors through PreReflEqv(T )→ PreReflGraph(T ).

Proof. Note that PreReflEqv(T )→ PreReflGraph(T ) is bijective on contexts and terms. Thus it suffices to
consider the types.

We prove by induction on the types of T that for every type A (resp. representable type A), the Reedy
type JAK (resp. representable Reedy type JAK) is homotopical. For any generating type S (resp. generating
representable type S), this is handled by the constructors contrS,l and contrS,r (resp. contrrepS,l and contrrepS,r ). All
of the other cases of the induction (for the 1-, Σ- and Π- type formers) follow from the fact that PreReflEqv(T )
is a (Σ, Πrep)-CwF. □

7.3. Reflexivity maps. We now try to define a reflexivity structure (definition 6.15) over T .

Definition 7.2 (Congruence operation). Let A :: ∂A→ RepTyT and B :: ∂B→ TyT be two global dependent
types, where A is a representable dependent type.

A congruence operation from A to B consists of:

apE
A,B :: ∀(σ : ∂A) (σe : J∂AKE(σ, σ)) (σr : J∂AKR(σ, σe))

(τ : A(σ)→ ∂B)

(τe : ∀al ar ae → J∂BKE(τ(al), τ(ar)))

(τr : ∀a ae ar → J∂BKR(τ(a), τe(ae)))

(b : (a : A(σ))→ B(τ(a)))

→ ∀al ar (ae : JAKE(σe, al , ar))→ JBKE(τe(ae), b(al), b(ar)),

apR
A,B :: ∀σ σe σr τ τe τr b

→ ∀a ae ar → JBKR(τr(ar), apE
A,B(. . . , b, ae)). ⌟

The representablility of A ensures that there is a type classifying the premises of a congruence operation,
because A(σ)→ ∂B, (a : A(σ))→ B(τ(a)), etc., are types. Thus a congruence operation is fully determined
by its evaluation at a suitable generic context.
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Assumption (A2). For every global dependent representable type A and generating type S : GenTyT , we have a
congruence operation from A :: ∂A→ RepTyT to S :: ∂S→ TyT . ⌟.

In particular, the congruence operation from 1 :: 1→ RepTyT to S is exactly a reflexivity operation for S.
When T is a first-order GAT, assumption (A2) reduces to the existence of reflexivity operations for every
generating type S.

Note that assumption (A2) is not ideal: it refers to an arbitrary representable type A, which can be seen as
a telescope of basic representable types. Thus it may require data for every possible telescope shape. We
would prefer to quantify over the generating representable types instead.

Lemma 7.3. Every global dependent monomial type A :: ∂A → MonoTyT can be equipped with a reflexivity
operation.

Proof. Since A is a monomial type, we can write

A(σ) = (δ : ∆(σ))→ T(τ(σ, δ))

for some ∆ :: ∂A→ RepTyT and τ :: ∀σ→ ∆(σ)→ ∂T.
By definition of the section J−K, we know that:

JAKE(σl , σr, σe, fl , fr) = ∀δl δr δe → JTKE(JτKE(σe, δe), fl(δl), fr(δr)),

JAKR(σ, σe, σr, f , fe) = ∀δ δe δr → JTKR(JτKR(σr, δr), fe(δe)).

We first pose:

τe : ∀σ σe δl δr δe → J∂TKE(τ(σl , δl)),

τe(. . . ) ≜ JτKE((σ, δl), (σ, δr), (σe, δe)),

τr : ∀σ σe σr δ δe δr → J∂TKR(τ(σ, δ), τe(σe, δe)),

τr(. . . ) ≜ JτKR((σ, δ), (σe, δe), (σr, δr)).

By assumption (A2), we have a congruence operation ap∆,T from ∆ to T.
We can finally define the reflexivity operation for A:

reflE
A(σ, σe, σr, f ) ≜ λδl δr δe 7→ apE

∆,T(σr, τ(σ), τe(σe), τr(σr), f , δe),

reflR
A(σ, σe, σr, f ) ≜ λδ δe δr 7→ apR

∆,T(σr, τ(σ), τe(σe), τr(σr), f , δr). □

Lemma 7.4. Every global dependent polynomial type A :: ∂A → PolyTyT can be equipped with a reflexivity
operation.

Proof. We know that A is a telescope of monomial types and we can perform induction on its length. The
case of the empty telescope is trivial.

If A is a non-empty telescope, we have

A(σ) = (b : B(σ))× (c : C(σ, b))

for some B :: ∂A→ PolyTyT and C :: ∀σ→ B(σ)→ MonoTyT .
By the induction hypothesis, we have a reflexivity operation for B. By lemma 7.3, we have a reflexivity

operation for C.
We can thus define:

reflE
A(σ, σe, σr, (b, c)) ≜ (reflE

B(σ, σe, σr, b), reflE
C((σ, b), (σe, reflE

B(. . . , b)), (σr, reflR
B(. . . , b)), c)),

reflR
A(σ, σe, σr, (b, c)) ≜ (reflR

B(σ, σe, σr, b), reflR
C((σ, b), (σe, reflE

B(. . . , b)), (σr, reflR
B(. . . , b)), c)). □

Lemma 7.5. Every global dependent type A :: ∂A→ TyT can be equipped with a reflexivity operation.

Proof. By proposition 3.10, there is some polynomial type A0 :: ∂A→ PolyTyT such that ∀σ→ TmT (A0(σ)) ∼=
TmT (A(σ)). The results then follows from lemma 7.4. □

Thus, by proposition 6.16, we have a reflexivity structure over T .
Now that we have a reflexivity structure, we obtain as in section 6.4 reflexive equivalences and dependent

equivalences over T .
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7.4. Centers and paths. It remains to show that the contractible types have centers and all paths.
We assume that center and homogeneous all-paths operations are defined for the basic contractible types.

Assumption (A3). For every constructor c :: (γ : Γ)→ isContrb(A(γ)) of isContrb, we have the following data:

centerc :: ∀(γ : Γ)→ A(γ),

hpathc :: ∀γ (γe : JΓKE(γ, γ)) (γr : JΓKR(γ, γe))

→ (x, y : A(γ)) → JAKE(γe, x, y).

Note that every constructor of isContrb is of this form. ⌟

In assumption (A3) we have been careful not to mention reflΓ; the assumption can be checked indepen-
dently of the construction of the reflexivity maps, and independently of assumption (A2).

Lemma 7.6. Every contractibility witness c :: (γ : Γ) → isContrb(A(γ)) admits a center operation and a
homogeneous all-paths operation.

Proof. Fix a contractibility witness c :: (γ : Γ) → isContrb(A(γ)). By definition of isContrb, there exists a
constructor d :: (δ : ∆) → isContrb(B(δ)) of isContrb such that c = d[δ] for some δ :: Γ → ∆. In particular,
A = B[δ].

We can now pose

c.center(γ) ≜ centerd(δ(γ)),

c.hpath(γ, x, y) ≜ hpathd(δ(γ), JδKE(refl
E
Γ (γ)), JδKR(refl

R
Γ (γ)), x, y). □

We then proceed to extend this to arbitrary contractibility witnesses, relying on the constructions of sec-
tion 6.4.

Lemma 7.7. For every representable contractibility witness c :: (γ : Γ) → isContrrep(A(γ)), there is a center
operation for c.

Proof. By induction on c.
Constructor contrrepb :

By lemma 7.6.
Constructor contrrep1 :

By construction 6.19.
Constructor contrrepΣ :

By construction 6.20. □

Lemma 7.8. Let c :: (γ : Γ) → A(γ) → isContrrep(B(γ, a)) be a global dependent family of contractibility
witnesses. If we have a homogeneous all-paths operation for c over Γ.A, then we construct a heterogeneous all-paths
operation for c.

Proof. By construction 6.17, applied to the family restriction RepTyT → TyT . Checking the assumption relies
on lemma 7.7. □

Lemma 7.9. For every representable contractibility witness c :: (γ : Γ)→ isContrrep(A(γ)), there is a homogeneous
all-paths operation for c.

Proof. By induction on c.
Constructor contrrepb :

By lemma 7.6.
Constructor contrrep1 :

By construction 6.19.
Constructor contrrepΣ :

By construction 6.21 and lemma 7.8. □
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We have now defined center and all-paths operations for all contractibility witnesses for representable
types. We remark that this already equips the family of representable types with the structure of weakly
stable identity types.

Proposition 7.10. The family RepTyT is equipped with weakly stable identity types, where the introduction structure
is given by the reflexive equivalences constructed in section 7.2.

Proof. We use theorem 5.10. We have defined contractibility data, reflexive equivalences and dependent
equivalences in section 7.2, and centers and paths of contractible types in lemma 7.7 and lemma 7.9. □

Lemma 7.11. For every contractibility witness c :: isContr(A), there is a center operation for c.

Proof. By induction on c.

Constructor contrb:
By lemma 7.6.

Constructor contr1:
By construction 6.19.

Constructor contrΣ:
By construction 6.21.

Constructor contrΠ:
By construction 6.22. □

Lemma 7.12. Let c :: (γ : Γ) → (a : A(γ)) → isContr(B(γ, a)) be a global dependent family of contractibility
witnesses. If we have a homogeneous all-paths operation for c over Γ.A, then we construct a heterogeneous all-paths
operation for c.

Proof. By construction 6.17, applied to the family restriction TyT → TyT . Checking the assumption relies
on lemma 7.11. □

Lemma 7.13. For every contractibility witness c :: (γ : Γ) → isContr(A(γ)), there is a homogeneous all-paths
operation for c.

Proof. By induction on c.

Constructor contrb:
By lemma 7.6.

Constructor contr1:
By construction 6.19.

Constructor contrΣ:
By construction 6.21 and lemma 7.12.

Constructor contrΠ:
By construction 6.23, proposition 7.10 and lemma 7.12. □

7.5. Main theorem. We record the results of this section in the following theorem.

Theorem 7.14. Let T be a SOGAT equipped with homotopy relations. If it satisfies assumption (A1), assumption (A2)
and assumption (A3), then it satisfies external univalence, i.e. the (Σ, Πrep)-CwF T can be equipped with weakly
stable identity types satisfying function extensionality and saturation with respect to the homotopy relations.

Proof. The weakly stable identity types are constructed using theorem 5.10. We have defined contractibility
data, reflexive equivalences and dependent equivalences in section 7.2, and centers and paths of contractible
types in lemma 7.11 and lemma 7.13. Saturation with respect to the homotopy relations follows from the
constructors contrS,∼ of isContrb. Function extensionality follows from the definition of the Π-types in
PreReflGraph(C). □
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7.6. Necessary conditions. The hypotheses of theorem 7.14 are not necessary conditions in the general
setting. However, they become necessary for SOGATs without equations, and more generally for cofibrant
SOGATs, i.e. for SOGATs that are retracts (in CwFΣ,Πrep ) of SOGATs without equations.

Theorem 7.15. Let T be a cofibrant SOGAT, i.e. a (Σ, Πrep)-CwF that is in the left class of the weak factorization
system generated by {Ity, Ityrep , Itm}.

Assume that T is equipped with homotopy relations, such that for every generating representable sort S :
GenRepTyT , the homotopy relation (− ∼S(−) −) is a family of representable types.

If T satisfies external univalence, then it satisfies the conditions of theorem 7.14 (assumption (A1), assumption (A2)
and assumption (A3)).

Proof. The identity types (≃) of T induce contractibility data isContr≃ on T , as constructed in construc-
tion 5.11.

The contractibility data isContr≃ satisfies the necessary closure conditions, so that the reflexive equiva-
lences model ReflEqv(T ) can be constructed by construction 6.13; we omit the details.

We consider the contextual core ReflEqvcxl(T ) of ReflEqv(T ); its contexts can be obtained as iterated
context extensions in ReflEqv(T ). Since ReflEqv(T ) has Σ-types, any context of ReflEqvcxl(T ) is isomor-
phic to a closed type of ReflEqv(T ). In particular, any context of ReflEqvcxl(T ) satisfies the contractibility
conditions of reflexive equivalences.

We now show that the projection morphism V : ReflEqvcxl(T ) → T satisfies the right lifting property
with respect to {Ity, Ityrep , Itm}.

Case Ity : FreeΣ,Πrep(Γ ⊢)→ FreeΣ,Πrep(Γ ⊢ A type): Given an object Γ : ReflEqvcxl(T ) and a type A ::
y(ΓV)→ TyT , we have to extend A to a dependent reflexive equivalence (A, AE, AR) over Γ.

Since (ΓE, ΓR) satisfies the contractibility condition of a reflexive equivalence, it is equivalent to the
reflexive equivalence IdΓ. Up to this equivalence, we can then compute (AE, AR) as the dependent
identity type DIdΓ.A.

Case Ityrep : FreeΣ,Πrep(Γ ⊢)→ FreeΣ,Πrep(Γ ⊢ A typerep): Similar to the case of Ity. Given an object
Γ : ReflEqvcxl(T ) and a representable type A :: y(ΓV) → RepTyT , we have to extend A to a
representable dependent reflexive equivalence (A, AE, AR) over Γ. We can compute (AE, AR) as the
dependent identity type DIdΓ.A. The assumption that the homotopy relation (− ∼S(−) −) is a family
of representable types whenever S is representable ensures that we can choose representable families
for AE and AR.

Case Itm : FreeΣ,Πrep(Γ ⊢ A type)→ FreeΣ,Πrep(Γ ⊢ a : A): Given an object Γ : ReflEqvcxl(T ), a depen-
dent reflexive equivalence A over Γ and a term a :: (γ : y(ΓV))→ TmT (AV(γ)), we have to show
that a can be extended to a term of ReflEqv(T ), that is we have to construct:

aE : ∀γl γr (γe : TmT (ΓE(γl , γr)))→ TmT (AE(γe, a(γl), a(γe))),

aR : ∀γ γe (γr : TmT (ΓR(γ, γe)))→ TmT (AR(γr, a(γl), aE(γe))).

Up to the identification of (ΓE, ΓR) and (AE, AR) with respectively IdΓ and DIdΓ.A, aE and aR are
just given by the dependent action of a on paths apda.

Note that we could not show the lifting property with respect to Etm: there could be multiple ways to lift a
same term from T to ReflEqvcxl(T ), e.g. given by multiple definitions of the dependent action on paths.

Since T is {Ity, Ityrep , Itm}-cellular, we obtain a section J−K : T → ReflEqvcxl(T ) of V : ReflEqvcxl(T )→
T . By composing this section with the (Σ, Πrep)-CwF morphism ReflEqvcxl(T )→ PreReflGraph(T ), we
equip PreReflGraph(T ) with an internal model of T , satisfying assumption (A1).

It remains to check assumption (A2) and assumption (A3).
The conditions of assumption (A2) are instances of the dependent action on paths.
Finally, assumption (A3) is proven by showing that induction on the inductive families isContrrep and

isContr that for every A :: y(Γ)→ TyT , we have

∀γ→ isContr(A(γ))→ isContr≃(A(γ)),
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since we already know that the types that are contractible with respect to isContr≃ have centers and all-paths.
This amount to showing some closure conditions on isContr≃ that were already proven in the construction
of ReflEqv(T ). □

8. APPLICATIONS

In this section, we apply theorem 7.14 to prove that some SOGATs satisfy external univalence.

8.1. Categories. We first consider the first-order generalized algebraic theory TCat of categories, equipped
with the homotopy relations defined in example 4.2. We apply theorem 7.14 to show that it satisfies external
univalence.

These constructions have been formalized in Agda 1, showing that for some concrete theory, assump-
tion (A1), assumption (A2), assumption (A3) are syntactic enough as to be checked in a proof assistant.

We first need to check assumption (A1), that is to equip PreReflGraph(TCat) with an internal model of
TCat.

The sorts of objects, morphisms and equalities between morphisms are interpreted as follows:

JobKE(γe) ≜ λxl xr 7→ xl
∼= xr,

Jhom(x, y)KE(γe) ≜ λ fl fr 7→ EqHom(JyKE(γe) ◦ fl , fr ◦ JxKE(γe)),

Jeqhom( f , g)KE(γe) ≜ λpl pr 7→ 1,

JobKR(γr) ≜ λx xe 7→ EqHom(xe, id(x)),

Jhom(x, y)KR(γr) ≜ λ f fe 7→ 1,

Jeqhom(x, y)KR(γr) ≜ λp pe 7→ 1.

We then have to interpret the category operations, in a way that satisfies the category laws. We have to
define the following components:

Jid(x)KE(γe) : EqHom(JxKE(γe) ◦ id(x(γl)), id(x(γr)) ◦ JxKE(γe)),

Jcomp( f , g)KE(γe) : EqHom(JzKE(γe) ◦ comp( f (γl), g(γl)), comp( f (γr), g(γr)) ◦ JxKE(γe)).

The components Jid(x)KR and Jcomp( f , g)KR and are trivial, since Jhom(−)KR(−) is the unit type.
The component Jid(x)KE follows directly from the category laws.
For the remaining component Jcomp( f , g)KE, remember that we have assumptions

J f KE(γe) : EqHom(JyKE(γe) ◦ f (γl), f (γr) ◦ JxKE(γe)), and

JgKE(γe) : EqHom(JzKE(γe) ◦ g(γl), g(γr) ◦ JyKE(γe)).

We can then apply the category laws to derive Jcomp( f , g)KE(γe).
Because the components−E are propositional, the category laws are trivially satisfied in PreReflGraph(TCat).
This finishes the definition of an internal model of TCat in PreReflGraph(TCat). We then have to check as-

sumption (A2). Since TCat is a first-order GAT, we just have to define reflexivity operations for every
generating type. The reflexivity operation of objects is given by id, the reflexivity operations for morphisms
is given by irefl and the reflexivity operation for equalities between morphisms is trivial.

It remains to check assumption (A3). We first unfold the definition of isContrb; it has the following
constructors:

contrOb,l : (x : Ob)→ isContrb((y : Ob)× (x ∼= y)),

contrOb,r : (y : Ob)→ isContrb((x : Ob)× (x ∼= y)),

contrOb,∼ : (x : Ob)→ isContrb((y : Ob)× (x ∼= y)),

contrHom,l : ∀xl xr xe yl yr ye ( f : Hom(xl , yl))

1The Agda files are available at https://rafaelbocquet.gitlab.io/Agda/20221114_ExternalUnivalence/Cat.
html.

https://rafaelbocquet.gitlab.io/Agda/20221114_ExternalUnivalence/Cat.html
https://rafaelbocquet.gitlab.io/Agda/20221114_ExternalUnivalence/Cat.html
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→ isContrb((g : Hom(xr, yr))× EqHom(ye ◦ f ◦ x−1
e , g)),

contrHom,r : ∀xl xr xe yl yr ye ( f : Hom(xr, yr))

→ isContrb((g : Hom(xl , yl))× EqHom(ye ◦ g ◦ x−1
e , f )),

contrHom,∼ : ∀x y ( f : Hom(x, y))

→ isContrb((g : Hom(x, y))× EqHom( f , g)),

contrEqHom,l : ∀xl xr xe yl yr ye fl fr fe gl gr ge (p : EqHom( fl , gl))

→ isContrb(EqHom( fr, gr)× 1),

contrEqHom,r : ∀xl xr xe yl yr ye fl fr fe gl gr ge (p : EqHom( fr, gr))

→ isContrb(EqHom( fl , gl)× 1),

contrEqHom,∼ : ∀x y f g (p : EqHom( f , g))

→ isContrb(EqHom( f , g)× 1).

However only contrOb,l , contrOb,r and contrOb,∼ are interesting. In all of the other constructors, the type is
isomorphic to 1, and verifying the conditions of assumption (A3) is then trivial. Furthermore, the constructors
contrOb,l , contrOb,r and contrOb,∼ are equivalent, and it suffices to consider contrOb,l .

We have to construct the following terms:

centerOb,l : ∀(x : Ob)→ (y : Ob)× ( f : x ∼= y),

hpathOb,l : ∀x (xe : x ∼= x)

(yl : Ob) ( fl : xl
∼= yl) (yr : Ob) ( fr : xr ∼= yr)

→ (ye : yl
∼= yr)

× EqHom(ye ◦ fl ◦ x−1
e , fr)

× EqHom(xe ◦ f−1
l ◦ y−1

e , f−1
r ).

The input data for hpathOb,l can be described in the following diagram:

x x

yl yr .

xe
∼=

∼=fl ∼= fr

Then hpathOb,l should be a filler of that open square.
They can be constructed as follows:

centerOb,l(x) ≜ (x, id(x)),

hpathOb,l(x, xe, yl , fl , yr, fr) ≜ ( fr ◦ xe ◦ f−1
l , irefl, irefl).

Thus we have checked assumption (A3). By theorem 7.14, the theory TCat satisfies external univalence.

8.2. Type theory with identity types. We now show external univalence for the SOGAT TId of a representable
family equipped with weak identity types, equipped with the homotopy relations of example 4.3.

We first equip the inverse diagram model PreReflGraph(TId) with an internal model of TId.
The sorts of types and terms are interpreted as follows:

JityKE(γe) ≜ λA B 7→ iEquiv(A, B),

Jitm(A)KE(γe) ≜ λx y 7→ iTm(JAKE(γe, x, y)),

JityKR(γr) ≜ λA E 7→ isRefl(E),

Jitm(A)KR(γr) ≜ λx p 7→ iTm(JAKR(γr, x, p)),



EXTERNAL UNIVALENCE FOR SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES 41

where iEquiv(A, B) is the sort of relational equivalences between A and B, and

isRefl(E) ≜ (P : ∀a→ iTm(E(a, a))→ iTy)

× (∀a→ isContr((p : E(a, a))× P(p)))

is the sort of reflexivity structures over an equivalence E : iEquiv(A, A).
We also have to interpret the operations iId, irefl, iJ and iJβ in this model. For the operations iId and

irefl, we have to define the following components:

JiId(A, x, y)KE(γe) : iEquiv(iId(A(γl), x(γl), y(γl)), iId(A(γr), x(γr), y(γr))),

JiId(A, x, y)KR(γr) : isRefl(JiId(A, x, y)KE(γe)),

Jirefl(A, x)KE(γe) : iTm(JiId(A, x, x)KE(γe, irefl(A(γl), x(γl)), irefl(A(γr), x(γr)))),

Jirefl(A, x)KR(γr) : iTm(JiId(A, x, x)KR(γr, irefl(A(γ), x(γ)), Jirefl(A, x)KE(γe))).

In other words, we have to show that iId preserves relational equivalences in a way that preserves reflexive
equivalences, and that irefl preserves elements of these relations. We omit this standard proof.

This completes the definition of the internal model of TId in PreReflGraph(TId). We now have to
check assumption (A2).

Let A :: ∂A → RepTyTId
be a global dependent representable type. We have to construct congruence

operations from A to ity and itm:

apE
A,ity :: ∀(σ : ∂A)(σe : J∂AKE(σ, σ))(σr : J∂AKR(σ, σe))

(B : A(σ)→ iTy)

→ ∀al ar (ae : JAKE(σe, al , ar))→ iEquiv(B(al), B(ar)),

apR
A,ity :: ∀(σ : ∂A)(σe : J∂AKE(σ, σ))(σr : J∂AKR(σ, σe))

(B : A(σ)→ iTy)

→ ∀a ae (ar : JAKR(σr, a, ae))→ isRefl(apE
A,ity(σ, σe, σr, B, a, a, ae)),

apE
A,itm :: ∀(σ : ∂A)(σe : J∂AKE(σ, σ))(σr : J∂AKR(σ, σe))

(B : A(σ)→ ity)

(Be : ∀al ar ae → iEquiv(B(al), B(ar)))

(Br : ∀a ae ar → isRefl(Be(a, a, ae)))

(b : (a : A(σ))→ iTm(B(a)))

→ ∀al ar (ae : JAKE(σe, al , ar))→ Be(al , ar, ae, b(al), b(ar)),

apR
A,itm :: ∀(σ : ∂A)(σe : J∂AKE(σ, σ))(σr : J∂AKR(σ, σe))

(B : A(σ)→ ity)

(Be : ∀al ar ae → iEquiv(B(al), B(ar)))

(Br : ∀a ae ar → isRefl(Be(a, a, ae)))

(b : (a : A(σ))→ iTm(B(a)))

→ ∀a ae (ar : JAKR(σr, a, ae))→ Br(a, ae, ar, b(a), apE
A,itm(σ, σe, σr, B, Be, Br, b, a, a, ae)).

By proposition 3.10, we can assume without loss of generality that A is a telescope of basic representable sorts.
Since the only representable sort of TId is itm, this means that we have a dependent telescope ∆ :: ∂A→ iTy⋆,
with A(σ) = iTm⋆(∆(σ)). We can then compute JAKE and JAKR and prove by induction on the telescope
∆ that (ar : A(σ))× (ae : JAKE(σe, al , ar)) and (ae : JAKE(σe, a, a))× (ar : JAKR(σr, a, ae)) are contractible in
iTy⋆ (with respect to the inner identity types), which is sufficient to derive apA,ity and apA,itm.
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It remains to check assumption (A3). We first unfold the definition of isContrb for this theory; it is given
by the following constructors.

contriTy,l : (A : iTy)→ isContrb((B : iTy)× iEquiv(A, B))

contriTy,r : (B : iTy)→ isContrb((A : iTy)× iEquiv(A, B))

contriTy,∼ : (A : iTy)→ isContrb((B : iTy)× iEquiv(A, B))

contriTm,l : ∀A B (E : iEquiv(A, B)) (a : iTm(A))

→ isContrb((b : iTm(B))× iTm(E(a, b))),

contriTm,r : ∀A B (E : iEquiv(A, B)) (b : iTm(B))

→ isContrb((a : iTm(A))× iTm(E(a, b))),

contriTm,∼ : ∀A (x : iTm(A))

→ isContrb((y : iTm(A))× iTm(Id(A, x, y))).

We now check assumption (A3) for every constructor.
Constructor contriTy,l :

We have to construct the following terms:

centeriTy,l : ∀(A : iTy)→ (B : iTy)× iEquiv(A, B),

hpathiTy,l : ∀A (Ae : iEquiv(A, A))

(Bl : iTy) (El : iEquiv(A, Bl)) (Br : iTy) (Er : iEquiv(A, Br))

→ JA 7→ (B : iTy)× (E : iEquiv(A, B))KE(. . . , (Bl , El), (Br, Er)).

The center is given by the identity equivalence on A.

centeriTy,l(A) ≜ (A, id).

Defining hpath amounts to giving a composite and filler for the following open square of equiva-
lences:

A A

Bl Br .

≃
Ae

≃El ≃ Er

We omit this construction.
Constructor contriTy,r:

Up to symmetry, this constructor is equivalent to contriTy,l .
Constructor contriTy,∼:

This constructor is identical to contriTy,l .
Constructor contriTm,l :

We have to construct the following:

centeriTm,l : ∀A B (E : iEquiv(A, B)) a→ (b : iTm(B))× (p : iTm(E(a, b))),

hpathiTm,l : ∀(A : iTy) (Ae : iEquiv(A, A)) (Ar : isRefl(Ae))

(B : iTy) (Be : iEquiv(B, B)) (Br : isRefl(Be))

(E : iEquiv(A, B)) Ee Er

(a : iTm(A)) (ae : Ae(a, a)) (ar : Ar(a, ae))

bl (pl : iTm(E(a, bl))) br (pr : iTm(E(a, br)))

→ (be : iTm(Be(bl , br)))

× (pe : iTm(Ee(a, a, ae, bl , br, be, pl , pr))).
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The center is given by transporting a along the equivalence E:

centeriTm,l(A, B, E, a) ≜ E.
−→
fun(a).1.

Defining hpath amounts to giving a composite and filler for the following open dependent square

a a

bl br ,

ae

pl pr

over the following square of equivalences

A A

B B .

≃
Ae

≃E (Ee) ≃ E

≃
Be

We also omit this construction.
Constructor contriTm,r:

Up to symmetry, this constructor is equivalent to contriTm,l .
Constructor contriTm,∼:

This is a version of contriTm,l that is specialized to the identity equivalence.

By theorem 7.14, the theory TId satisfies external univalence.

8.3. Other type formers. If we extend TId with additional type formers, the proofs of assumption (A2)
and assumption (A3) remain the same. Only assumption (A1) needs to be checked; that is we have to give
an interpretation of the additional operations in PreReflGraph(T ).

Giving an interpretation of type and term formers in PreReflGraph(T ) amounts to a more or less
standard parametricity translation of the type and terms formers, similar to other parametricity translations
found in the literature (Bernardy, Jansson, and Paterson 2012; Tabareau, Tanter, and Sozeau 2021). As
in the case of identity types, we have to show that the type and term formers preserve equivalences and
identification in a way that preserves identity equivalences and reflexivity identifications. Furthermore,
these constructions have to be compatible with the various definitional equalities, such as the β- and η- rules
for Σ- and Π- types.

For example, in the case of 1-, Σ- and Π- types, this translation mirrors at the inner level the outer level
constructions of section 6:

J1KE(γe) ≜ λtl tr 7→ 1,

J1KR(γr) ≜ λt te 7→ 1,

JΣ(A, B)KE(γe) ≜ λpl pr 7→ (ae : JAKE(γe, π1(pl), π1(pr)))× (be : JBKE((γe, ae), π2(pl), π2(pr))),

JΣ(A, B)KR(γr) ≜ λp pe 7→ (ar : JAKR(γr, π1(p), π1(pe)))× (br : JBKR((γr, ar), π2(p), π2(pe))),

JΠ(A, B)KE(γe) ≜ λ fl fr 7→ (∀al ar (ae : JAKE(γe, al , ar))→ JBKE((γe, ae), iapp( fl , al), iapp( fr, ar)),

JΠ(A, B)KR(γr) ≜ λ f fe 7→ (∀a ae (ar : JAKR(γr, a, ae))→ JBKR((γr, ar), iapp( f , a), fe(ae)).

An empty type 0 can be interpreted in the presence of a 1-type.

J0KE(γe) ≜ λzl zr 7→ 1,

J0KR(γr) ≜ λz ze 7→ 1.



EXTERNAL UNIVALENCE FOR SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES 44

Inductive types such as booleans or natural numbers can be interpreted provided that they support large
elimination (or alternatively that sufficiently many indexed inductive types exist).

JBKE(γe)(true, true) ≜ 1,

JBKE(γe)(true, false) ≜ 0,

JBKE(γe)(false, true) ≜ 0,

JBKE(γe)(false, false) ≜ 1.

If a :: TmT (A) is any axiom of the theory, that is a generating element of a closed sort of T , then its
interpretation in PreReflGraph(T ) can be derived automatically from the reflexivity structure of T :

JaKE(⋆) ≜ reflE
A(a),

JaKR(⋆) ≜ reflR
A(a),

provided that reflE
A and reflR

A are well-defined (to be more precise we should consider extensions of the theory
T by additional axioms).

The Uniqueness of Identity Proofs principle

uip : ∀(A : iTy)→ isSet(A),

cannot be seen as an axiom in the previous sense, because ∀(A : iTy)→ isSet(A) is not a sort. However it
can still be interpreted in the pre-reflexive graphs model. It suffices to define

Juip(A)KE(γe) : iEquiv(isSet(A(γl)), isSet(A(γr))),

Juip(A)KR(γr) : isRefl(Juip(A)KE(γe)).

When defining Juip(A)KE(γe), we have an equivalence JAKE(γe) between A(γl) and A(γr), from which we
can derive an equivalence between isSet(A(γl)) and isSet(A(γr)). Defining Juip(A)KR(γr) is straightfor-
ward using the fact that isSet(−) is a propositional type.

Theorem 8.1. The SOGATs of type theories with weak identity types and any selection of type structures among:
• a 1-type;
• Σ-types;
• Π-types;
• an empty type 0, in the presence of 1;
• a boolean type with large elimination, in the presence of 1 and 0;
• a natural number type with large elimination, in the presence of 1 and 0;
• either weak or strict computation rules for any of the above type structures;
• any number of axioms, i.e. generating elements of closed representable sorts;
• the Uniqueness of Identity Proofs principle;

all satisfy external univalence. □

8.4. Type theories with universes. Finally, we discuss the situation of universes. Tabareau et al. have
achieved results that are similar to ours, but their work seemingly require the univalence axiom (Tabareau,
Tanter, and Sozeau 2021, §6.4) We claim that by using universes à la Russell, they implicitly assume the
existence of a coding function, that turns types into elements of the universe. By considering universes à la
Tarski and without coding functions, there is no obstacle to the proof of external univalence, even in the
presence of non-univalent universes.

We consider two SOGATs T1 and T2 that correspond to type theories with either a hierarchy of universes
à la Tarski or a hierarchy of universes à la Coquand.

Definition 8.2. The SOGAT T1 is presented by the following signature

ity : (i : N)→ Ty,

iTyi ≜ Tm(ityi),

itm : (i : N)→ iTy→ RepTy,
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iTmi(A) ≜ Tm(itmi(A)),

U : (i : N)→ iTyi+1,

El : (i : N)→ iTm(U i)→ iTyi,

u : (i : N)→ iTmi+2(U i+1),

− : El(ui) = U i,

Lift : (i : N)→ iTyi → iTyi+1,

lift : (i : N)(A : iTyi)→ iTm(A) ∼= iTm(Lift(A)),

iId : (i : N)(A : iTyi)(x, y : iTm(A))→ iTyi,

irefl : (i : N)(A : iTyi)(x : iTm(A))→ iTmi(iId(A, x, x)),
iJ : . . . ,
iJβ : . . .

The theory T2 is the extension of T1 with additional maps

c : iTyi → iTm(U i)

that are inverses to the maps El. ⌟

The two theories T1 and T2 may seem equivalent, since they their syntaxes can be identified.

Proposition 8.3. The map 0T1 → 0T2 is an isomorphism (of models of T1).

Proof. It suffices to show that the maps El have inverses in 0T1 , which follows from normalization for the
type theory T1. □

However, while 0T1 → 0T2 is an isomorphism, this is not the case for the map T1 → T2 between their
coclassifying (Σ, Πrep)-CwFs. We will show that T1 satisfies external univalence while T2 does not.

Definition 8.4. We define homotopy relations on both T1 and T2, analogously to the homotopy relations
defined in example 4.3.

A ∼ityi B ≜ iEquiv(A, B),

x ∼itmi(A) y ≜ iTm(iId(A, x, y)).

Lemma 8.5. The theory T1 satisfies external univalence with respect to the homotopy relations defined in definition 8.4.

Proof. We use theorem 7.14. Assumption (A2) and assumption (A3) can be checked in the same way as
in section 8.2; we omit the proof.

We equip PreReflGraph(T1) with the structure of an internal model of T1.
The sorts of types and terms are interpreted as follows:

JityiKE(γe) ≜ λA B 7→ iEquivi(A, B),

Jitmi(A)KE(γe) ≜ λx y 7→ iTmi(JAKE(γe, x, y)),

JityiKR(γr) ≜ λA E 7→ isRefli(E),

Jitmi(A)KR(γr) ≜ λx p 7→ iTmi(JAKR(γr, x, p)),

where iEquivi(A, B) is the sort of relational equivalences between A and B in Tyi, and

isRefl(E) ≜ (P : ∀a→ iTmi(E(a, a))→ iTyi)

× (∀a→ isContr((p : E(a, a))× P(p)))

is the sort of reflexivity structures in Tyi over an equivalence E : iEquivi(A, A).
The universes are interpreted as follows; note that the relation between elements of the universe is not

equivalence, but identification of the codes:

JU iKE(γe) : iEquivi+1(U i, U i),
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JU iKE(γe) ≜ λA B 7→ iIdU i (A, B),

JU iKR(γr) : isRefli+1(JU iKE(γe)),

JU iKR(γr) ≜ λA e→ iId(e, ireflU i (A)),

JEli(A)KE(γe) : iEquivi(El(A(γl)), El(A(γr))),

JEli(A)KE(γe) ≜ idtoeqv(JAKE(γe)),

JEli(A)KR(γr) : isRefl(idtoeqv(JAKE(γe))),

JEli(A)KR(γr) ≜ (follows from JAKR(γr) : iId(JAKE(γe), irefl(A(γ)))).

Interpreting the lifting operations is straightforward, and the identity types can be interpreted as in sec-
tion 8.2.

This completes the construction of the internal model of T1 in PreReflGraph(T1). By theorem 7.14, the
theory T1 satisfies external univalence. □

Lemma 8.6. The theory T2 does not satisfies external univalence with respect to the homotopy relations defined
in definition 8.4.

Proof. Assuming that T2 satisfies external univalence, the action of c on paths determines a map

(A, B : iTy0)→ iEquiv(A, B)→ iTm(iId(U0, c(A), c(B)))

in the (Σ, Πrep)-CwF T2.
This map can be interpreted into any model of T2; in particular it can be interpreted in the standard model

Set. Since we can assume without loss of generality that there exists two sets A and B that are equivalent
but not equal, T2 cannot satisfy external univalence. (In a set-theoretic metatheory, we can choose A = {1}
and B = {2}. In a type-theoretic metatheory, we can add new redundant codes to the universes of Set, e.g.
we define U ′0 ≜ U0 + {A, B} with El(A) = El(B) = 1.) □

Theorem 8.7. The SOGATs of type theories with a N-indexed hierarchy of universes à la Tarski, weak identity types
and any selection of type structures among:

• 1-types;
• Σ-types;
• Π-types;
• empty types 0, in the presence of 1;
• boolean types, in the presence of 1 and 0;
• natural number types, in the presence of 1 and 0;
• either weak or strict computation rules for the above type structures;
• any number of axioms, i.e. postulated elements of closed representable sorts types, such as the univalence

axiom;
• the Uniqueness of Identity Proofs principle;

all satisfy external univalence. □

9. FUTURE WORK

9.1. Semantic study of external univalence. In this paper, we have defined external univalence as a property
of the (Σ, Πrep)-CwF T . The advantage of this approach is that we did not have to consider the semantics of
T at all.

In future work, we plan to study how external univalence for a SOGAT T is related to properties of the
category ModT of models of T . In particular, we plan to show claim 4.8, which says that T satisfies external
univalence exactly when the category Modcxl

T of contextual models of T , equipped with suitable classes of
maps, is a left semi-model category. We also plan to show that the notion of Morita equivalence between type
theories, which was introduced by Isaev (2018), can be captured at the level of the (Σ, Πrep)-CwFs: given a
morphism T1 → T2 of SOGATs that satisfy external univalence, the adjunction between the left semi-model



EXTERNAL UNIVALENCE FOR SECOND-ORDER GENERALIZED ALGEBRAIC THEORIES 47

categories Modcxl
T1

and Modcxl
T2

is a Quillen adjunction if and only if T1 → T2 preserves the identity types,
and a Quillen equivalence if and only if T1 → T2 is additionally a weak equivalence in CwFΣ,Πrep,Idws .

9.2. Strictification. It is rather inconvenient that our methods only equip T with weakly stable identity
types. It does not seem possible to equip T with strictly stable identity types in general. Instead, we may
want to strictify the identity types, i.e. faithfully embed T into a (Σ, Πrep)-CwF with strictly stable identity
types.

Conjecture 9.1. Let T be a SOGAT equipped with homotopy relations. If T satisfies external univalence,
then there exists a (Σ, Πrep, Id)-CwF C with strictly stable identity types and a (Σ, Πrep)-CwF morphism
T → C that weakly preserves identity types and is essentially surjective on types and terms. ⌟

The known strictification methods cannot be applied to this situation. For example, the local universes
method (Lumsdaine and Warren 2015) requires more Π-types than available in T .

It is however possible to strictify the identity types in the special case of first-order generalized algebraic
theories without equations.

Theorem 9.2. Let T be a first-order generalized algebraic theory without equations, i.e. an {Ity, Itm}-cellular Σ-CwF.
If T satisfies external univalence with respect to a choice of homotopy relations, then T can be equipped with strictly

stable identity types satisfying saturation with respect to the homotopy relations.

Proof. This is proven for {Ity, Itm}-cellular CwFs (without Σ) in [Bocquet 2022, Theorems 1 and 2], but the
methods can be generalized to {Ity, Itm}-cellular Σ-CwFs. □

9.3. Embedding theories into richer models. While we have shown that it is possible to transport structures
over homotopies for any SOGAT that satisfies external univalence, this only holds for structures that are
expressible in the language of the (Σ, Πrep)-CwF T . This language is not sufficiently expressive for all
applications.

It would be desirable to conservatively embed T into a richer language that allows for the specification of
additional structures and properties. A good candidate for this richer language is (any variant of) Homotopy
Type Theory.

Conjecture 9.3 (Weak embedding into HoTT). Let T be a SOGAT equipped with homotopy relations
satisfying external univalence. Then there exists a model C of (some variant of) HoTT equipped with an
univalent internal model of T such that the induced (Σ, Πrep)-morphism T → C is essentially surjective on
terms. ⌟

Conjecture 9.4 (Strict embedding into HoTT). Let T be a SOGAT equipped with homotopy relations
satisfying external univalence. Then there exists a model C of (some variant of) HoTT equipped with an
univalent internal model of T such that the induced (Σ, Πrep)-morphism T → C is bijective on terms. ⌟

These conjectures should be seen as ∞-categorical variants of the following 1-categorical theorem:

Theorem 9.5. Let T be any SOGAT. Then there exists a model C of extensional type theory equipped with an internal
model of T such that the induced (Σ, Πrep)-morphism T → C is bijective on terms.

Proof sketch. We define C as the presheaf topos T̂ . Then the Yoneda embedding y : T → T̂ is a pseudo-
morphism of (Σ, Πrep)-CwFs, and bijective on terms. Relying on the fact that T is {Ity, Ityrep , Itm, Etm}-
cellular, we can construct a strict replacement y : T → T̂ of the Yoneda embedding, along with a 2-cell y ∼= y.
This strict replacement is also bijective on terms. □

An ∞-categorical version of this argument gives intuition for why conjecture 9.3 should hold. Indeed,
when a SOGAT T satisfies external univalence, the (Σ, Πrep)-CwF T is a (Σ, Πrep, Idws)-CwF, which should
correspond to some ∞-category with representable maps. By the ∞-categorical Yoneda lemma, we can
faithfully embed this ∞-category into an ∞-topos of ∞-categorical presheaves. We can finally interpret
HoTT into this ∞-topos. Unfortunately, turning this this informal proof idea into a proper proof is not
straightforward.
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When studying the computational properties of type theories, such as canonicity and normalization
properties, it is typical to rely on the interpretation of extensional type theory into some presheaf categories.
A solution of these conjectures would provide a good setting for the study of some homotopical properties
of type theories, such as homotopy canonicity and normalization up to homotopy.
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