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Abstract
We present new induction principles for the syntax of dependent type theories, which we call relative
induction principles. The result of the induction principle relative to a functor F into the syntax is
stable over the codomain of F . We rely on the internal language of presheaf categories. In order to
combine the internal languages of multiple presheaf categories, we use Dependent Right Adjoints and
Multimodal Type Theory. Categorical gluing is used to prove these induction principles, but it not
visible in their statements, which involve a notion of model without context extensions. As example
applications of these induction principles, we give short and boilerplate-free proofs of canonicity and
normalization for some small type theories, and sketch proofs of other metatheoretic results.
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1 Introduction

Induction principles

Syntax without bindings or equations is characterized by its universal property as the initial
object of some category of algebras, or equivalently by its induction principle as an inductive
type. The same can be said for syntax with equations, e.g. quotient inductive-inductive
types [24, 26]. As for syntax with bindings, we can encode it using syntax with equations
but without bindings by making explicit the contexts and substitutions [3].

While this construction yields induction principles for syntax with bindings, most meta-
theoretic results are not direct applications of these induction principles. They often involve
a second step, in which the contexts over which the result holds are identified. For example,
canonicity only holds in the empty context, whereas normalization holds over every context,
but is only stable under renamings. This second step is most of the time handled in an
ad-hoc manner.

Our main contribution is to show how this second step can be handled in a principled
way and to introduce new induction principles for syntactic categories with bindings that
merge the two steps into one. More specifically, we give statements and proofs of so called
relative induction principles for a small dependent type theory TΠ,B with function space and
booleans and for a minimal version of cubical type theory. We use these theories to present
our constructions, but they do not rely on any specific feature of these theories. They could
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be generalized to arbitrary type theories (for some general definition of type theory, such
as Uemura’s definition [37]). In the appendix we show how to generalize to a hierarchy of
universes closed under function space and booleans. We leave the full formal generalization
to future work.

In the general case, we consider a functor F : C → S, where S is the syntax of our theory
and C a category which should satisfy some universal property. We give induction principles
which directly provide results that are stable over the morphisms of C (hence the name
relative). Under the hood, the relative induction principles use the universal properties of
both C and S. The input data for a relative induction principle consists of a displayed model
without context extensions, along with some additional data depending on the universal
property of C.

The following table lists example functors and the result that the induction principle
relative to the given functor provides.

{⋄} → 0TΠ,B Canonicity [12] (Section 5.1)
Ren → 0TΠ,B Normalization [2, 12] (Section 5.2)
□ → 0CTT (Homotopy/Strict) canonicity for cubical type theory [14] (Section 5.3)
A□ → 0CTT Normalization for cubical type theory [35] (Section 5.4)
0ITT → 0ETT Conservativity of Extensional Type Theory over

Intensional Type Theory [21, 29, 38] (Section 5.6)
0HoTT → 02LTT Conservativity of two-level type theory over HoTT [10]

There the initial model of a theory T is denoted by 0T, TΠ,B is the small type theory that
we consider in this paper, {⋄} is the terminal category, Ren is the category of renamings of
0TΠ,B , □ is the category of cubes, and A□ is the category of cubical atomic contexts of [35].

We note some similarity with the worlds of Twelf [31] and with the context schemas of
Beluga [32]. The worlds and context schemas can be seen as descriptions of full subcategories
spanned by contexts that are generated by a class of context extensions. Our approach is
more general, as we are not restricted to full subcategories.

In [18], an argument is made for the use of locally cartesian closed categories instead
of Uemura’s representable map categories in the semantics of type theories. Using locally
cartesian closed categories means that contexts can be extended by arbitrary judgments.
Indeed, the induction principle that we associate to F : C → S is left unchanged if S is
faithfully embedded into a category with additional context extensions. However it depends
on the context extensions of C; for instance canonicity is provable using {⋄} → 0T0 only
because {⋄} is not equipped with any way to extend contexts. Thus the general notion of
context extension remains important.

Higher-order abstract syntax

Higher-order abstract syntax [30] is an encoding of bindings that relies on the binding
structure of an ambient language. It is closely related to Logical Frameworks [19]. As shown
in [22] for the untyped lambda calculus, higher-order abstract syntax can be given semantics
using presheaf categories.

The equivalence of a higher-order presentation of syntax with another presentation is
usually called adequacy. Hofmann identified the crucial property justifying the adequacy
of the higher-order presentation of untyped or simply-typed syntax: given a representable
presheaf よA of a category C with products, the presheaf exponential (よA ⇒ B) can be
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computed as
∣∣よA ⇒ B

∣∣
Γ ≜ |B|Γ×A. This can be generalized to dependently typed syntax

by considering locally representable presheaves.
The internal language of presheaf categories yields a definition of Categories with Families

equipped with type-theoretic operations that are automatically stable under substitutions.
This gives a nice setting to work with a single model of type theory as used in e.g. [11, 5].
However, it does not immediately give a way to describe the general semantics of a type
theory, since different models may live over different presheaf categories. We solve this
problem by using Multimodal Type Theory.

Multimodal Type Theory

The action on types of a morphism F : C → D of models can be seen as a natural
transformation FTy : TyC → F ∗ TyD, where F ∗ : PshD → PshC is precomposition by F .
The action on terms is harder to describe. As terms are dependent over types, we essentially
need to extend F ∗ to dependent presheaves. The correct way to do this is to see F ∗ as a
dependent right adjoint [9]; it satisfies a universal property that can be axiomatized and
yields a modal extension of the internal languages of PshC and PshD.

The actions of F on types and terms are described in this extended language by:

FTy : ∀(A : TyC) {F ∗} → TyD,

FTm : ∀(A : TyC) (a : TmC A) {F ∗} → TmD (FTy A {F ∗}).

where {F ∗} is an element of the syntax of dependent right adjoints that transitions between
the presheaf models PshC and PshD. Multimodal Type Theory [15] is a further extension
of this language that can deal with multiple dependent right adjoints at the same time.

Our strategy is to axiomatize just the structure and properties of the models, categories
and functors that we need, so as to be able to perform most constructions internally to
Multimodal Type Theory. We describe our variant of the syntax of a dependent right adjoint
in Section 3, and of the syntax of Multimodal Type Theory in Appendix B.

Other kinds of modalities have been used similar purposes in related work. In [33], the
flat modality of crisp type theory is used to characterize the closed terms internally to a
presheaf category. In [35], a pair of open and closed modalities correspond respectively to the
syntactic and semantic components of constructions performed internally to a glued topos.

One of the advantages of Multimodal Type Theory over other approaches is that additional
modes and modalities can be added without requiring modification to constructions that
rely on a fixed set of modes and modalities.

Categorical gluing

Some of the previous work on the metatheory of type theory has focused on the relation
between logical relations and categorical gluing. Some general gluing constructions have
been given [23, 34]. The input of these general gluing constructions is a suitable functor
F : C → D, where C is a syntactic model of type theory, and D is a semantic category
(for instance a topos, or a model of another type theory with enough structure). Gluing
then provides a new glued model P of the type theory, that combines the syntax of C with
semantic information from D. Canonicity for instance can be proven by gluing along the
global section functor 0T → Set. However the known proofs of normalization [36, 2, 12] that
rely on categorical gluing are not immediate consequences of these general constructions.

In the present work, we see the constructions of the glued category P and of its type-
theoretic structures as fundamentally different constructions. We rely on the same base
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category P ; but we equip it with type-theoretic structure using a different construction, that
does not necessarily involve logical relations.

As mentioned earlier, the input data for the relative induction principles are displayed
models without context extensions. One of the central results of our work is that any
displayed model without context extensions can be replaced by a displayed model with
context extensions over a different base category. In our proof this different base category is
the glued category P . However the concrete definition of P does not matter in applications:
the only thing that matters is that P is equipped with a suitable replacement of the input
displayed model without context extensions.

Contributions

Our main contribution is the statement and proofs of relative induction principles over the
syntax of dependent type theory (Section 4), which take into account the fact that the results
of induction should hold over a category C with a functor into the syntactic category of the
theory. These induction principles are described using the new semantic notions of displayed
models without context extensions and relative sections.

We show that the interpretation of dependent right adjoints and Multimodal Type Theory
in diagrams of presheaf categories gives an internal language that is well-suited to the
definitions of notions related to the semantics of syntax with bindings, including the notions
of models, morphisms of models, the rest of the 2-categorical structure of models, displayed
models (both with and without context extensions), sections of displayed models (Sections
2–3) We never have to prove explicitly that any construction is stable under substitutions.

We show the application of our relative induction principles through the following examples
in Section 5. We explain in detail an abstract version of Coquand’s canonicity proof [12],
normalisation [2, 12] which we detail in Appendix D, canonicity [14] and normalisation [35]
for cubical type theory, syntactic parametricity [8] and conservativity of ETT over ITT [21].

2 Internal language of presheaf categories and models of type theory

We work in a constructive metatheory, with a cumulative hierarchy (Seti) of universes.
If C is a small category, we write |C| for its set of objects and C(x → y) for the set of
morphisms from x to y. We may write (x : C) (or (x : Cop)) instead of (x : |C|) to indicate
that the dependence on x is covariant (or contravariant).
We write (f · g) or (g ◦ f) for the composition of f : C(x → y) and g : C(y → z).
We rely on the internal language of presheaf categories. Given a small category C,
the presheaf category PshC is a model of extensional type theory, with a cumulative
hierarchy of universes PshC

0 ⊂ PshC
1 ⊂ · · · ⊂ PshC

i ⊂ · · · , dependent functions, dependent
sums, quotient inductive-inductive types, extensional equality types, etc. For each of
our definitions, propositions, theorems, etc., we specify whether it should be interpreted
externally or internally to some presheaf category.
The Yoneda embedding is writtenよ : C → PshC . We denote the restriction of an element
x : |X|Γ of a presheaf X along a morphism ρ : C(∆ → Γ) by x[ρ]X : |X|∆.

2.1 Locally representable presheaves
The notion of locally representable presheaf is the semantic counterpart of the notion of
context extension.
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▶ Definition 1. Let X be a presheaf over a category C and Y be a dependent presheaf over
X. We say that Y is locally representable if, for every Γ : |C| and x : |X|Γ, the presheaf

Y|x : ∀(∆ : Cop)(ρ : C(∆ → Γ)) → Set∣∣Y|x
∣∣ ρ ≜ |Y |∆ (x[ρ])

over the slice category (C/Γ) is representable.
In that case, we have, for every Γ and x, an extended context (Γ ▷ Y|x), a projection

map pY
x : (Γ▷Y|x) → Γ and a generic element qY

x :
∣∣Y|x

∣∣ pY
x such that for every σ : ∆ → Γ

and y :
∣∣Y|x

∣∣ σ, there is a unique extended morphism ⟨σ, y⟩ : ∆ → (Γ ▷ Y|x) such that
⟨σ, y⟩ · pY

x = σ and qY
x [⟨σ, y⟩] = y. ⌟

Up to the correspondence between dependent presheaves and their total maps, locally
representable dependent presheaves are also known as representable natural transformations
[5]. We read this definition in a structured manner, with a local representability structure
consisting of a choice of representing objects in the above definition. The notion of local
representability is local: the restriction map from local representability structures for a
dependent presheaf Y over X to coherent families of local representability structures of Y|x
over よΓ for x : |X|Γ is invertible.1

Assume that C is an i-small category. Internally to PshC there is then, for every universe
level j, a family isRep : PshC

j → PshC
max(i,j) of local representability structures over j-small

presheaf families. Due to the above locality property, we have for a dependent presheaf Y over
X that elements of X ⊢ isRep(Y ) correspond to witnesses that Y is locally representable over
X. This leads to universes RepPshC

j ≜ (A : PshC
j ) × isRep A of j-small locally representable

presheaf families. As an internal category, it is equivalent to the j-small one that at Γ : |C|
consists of an element of the slice of C over Γ together with a choice of base changes along
any map C(∆ → Γ).

An alternative semantic for the presheaf (y : Y ) → Z y of dependent natural trans-
formations from Y to Z can be given when Y is locally representable over X : PshC . We
could define |(y : Y ) → Z y|Γ x ≜ |Z|Γ▷Y|x

(x[pY
x ], qY

x ). This definition satisfies the universal
property of the presheaf of dependent natural transformations from Y to Z, and is therefore
isomorphic to its usual definition. The alternative definition admits a generalized algebraic
presentation, which is important to justify the existence of initial models.

2.2 Internal definition of models

Our main running example is the theory TΠ,B of a family equipped with Π-types and a
boolean type. An internal model of TΠ,B in a presheaf category PshC consists of the following
elements.

Ty : PshC

Tm : Ty → RepPshC

Π : ∀(A : Ty)(B : Tm A → Ty) → Ty
app : ∀A B → Tm (Π A B) ≃ ((a : Tm A) → Tm (B a))

1 Locality also holds if we consider local representability as a property.
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B : Ty
true, false : Tm B
elimB : ∀(P : Tm B → Ty) (t : Tm (P true)) (f : Tm (P false)) (b : Tm B) → Tm (P b)
− : elimB P t f true = t

− : elimB P t f false = f

The inverse of app is written lam : ∀A B → ((a : Tm A) → Tm (B a)) → Tm (Π A B).
A model of TΠ,B is a category C equipped with a terminal object and with a global

internal model of TΠ,B in PshC .
▶ Remark 2. If we unfold the above internal definitions in presheaves, we see that a model of
TΠ,B is the same externally as an algebra for the signature of a quotient inductive-inductive
type (QIIT) [24] describing TΠ,B. That QIIT is significantly more verbose because it has
sorts of contexts and substitutions and, for every component of the model, separately states
the action at each context and coherent action of or coherence under substitution. The
notion of morphism of models we will define in Section 3.4 unfolds externally to the verbose
notion of algebra morphism for this QIIT, except that we do not require context extension to
be preserved strictly. The same remark holds for the notion of displayed model to be defined
in Section 4.

We have a (2, 1)-category ModTΠ,B of models. The morphisms are functors equipped
with actions on types and terms that preserve the terminal object and the context extensions
up to isomorphisms and the operations Π, app, B, true, false and elimB strictly. The 2-cells
are the natural isomorphisms between the underlying functors.

We have just given an internal definition of the objects of ModTΠ,B in the language of
presheaf categories; we will give internal definitions of the other components using dependent
right adjoints.

2.3 Sorts and derived sorts
A base sort of a CwF C is a (code for a) presheaf (in PshC) of the form Ty or Tm(−). The
derived sorts are obtained by closing the base sorts under dependent products with arities in
Tm(−). A derived sort is either a base sort, or a presheaf of the form (a : Tm(−)) → X(a)
where X(a) is a derived sort. A derived sort can be written in the form [X]Y where X is a
telescope of types and Y is a base sort that depends on X.

The type of an argument of a type-theoretic operation or equation is always a derived
sort. We often omit dependencies when writing derived sorts; e.g. we write [Tm]Ty for the
derived sort of the second argument of Π.

3 Dependent Right Adjoints and morphisms of models

In this section, we review the syntax and semantics of dependent right adjoints (DRAs) [9],
and use the syntax of the dependent right adjoint (F! ⊣ F ∗) to give an internal encoding
of the notion of morphism of models of TΠ,B. Multimodal Type Theory is only needed for
some of the proofs and constructions performed in the appendix.

3.1 Dependent Right Adjoints
Fix a functor F : C → D. The precomposition functor F ∗ : PshD → PshC has both a left
adjoint F! : PshC → PshD and a right adjoint F∗ : PshC → PshD. The functors F ∗ and F∗
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are not only right adjoints of F! and F ∗, they are dependent right adjoints, which means
that they admit actions on the types and terms of the presheaf models PshC and PshD

that interact with the left adjoints. We distinguish the functor F ∗ from the dependent right
adjoint F ∗ by using different colors. The dependent adjunction (F ∗ ⊣ F∗) is constructed
in [15, Lemma 8.2], whereas (F! ⊣ F ∗) is constructed in [17, Lemma 2.1.4]. We recall their
constructions in Appendix A.

We focus on the description of the dependent right adjoint F ∗ as a syntactic and type-
theoretic operation. For every presheaf X : PshC and dependent presheaf A over F! X, we
have a dependent presheaf F ∗ A over X, such that elements of A over F! X are in natural
bijection with elements of F ∗ A over X.

This is analogous to the definition of Π-types: given a presheaf X : PshC , a dependent
presheaf Y (x) over the (x : X) and a dependent presheaf Z(x, y) over (x : X, y : Y (x)), the
Π-type (y : Y (x)) → Z(x, y) over (x : X) is characterized by the fact that its elements are in
natural bijection with the elements of Z(x, y) over (x : X, y : Y (x)).

Following this intuition, we use a similar syntax for Π-types and modalities. We view the
left adjoint F! as an operation on the contexts of the presheaf model PshC . If (x : X) is a
context of this presheaf model, we write (x : X, {F ∗}) instead of F! X. Given a dependent
presheaf Y (x, {F ∗})2 over (x : X, {F ∗}), we write ({F ∗} → Y (x, {F ∗})) instead of F ∗ Y .

We write the components of the bijection between elements of Y (x, {F ∗}) over (x :
X, {F ∗}) and elements of ({F ∗} → Y (x, {F ∗})) over (x : X) similarly to applications and
λ-abstractions. If y(x, {F ∗}) is an element of Y (x, {F ∗}) over (x : X, {F ∗}), we write
(λ {F ∗} 7→ y(x, {F ∗})) for the corresponding element of ({F ∗} → Y (x, {F ∗})). Conversely,
given an element f(x) of ({F ∗} → Y (x, {F ∗})) over (x : X), we write f(x) {F ∗} for the
corresponding element of Y (x, {F ∗}). There is a β-rule (λ {F ∗} 7→ y(x, {F ∗})) {F ∗} =
y(x, {F ∗}) and an η-rule (λ {F ∗} 7→ f(x) {F ∗}) = f(x).

We may define elements of modal types by pattern matching. For instance, we may
write f(x) {F ∗} ≜ y(x, {F ∗}) to define f(x) as the unique element satisfying the equation
f(x) {F ∗} = y(x, {F ∗}), that is f(x) ≜ λ {F ∗} 7→ y(x, {F ∗}).

The operation ({F ∗} → −) is a modality that enables interactions between the two
presheaf models PshC and PshD. The symbols {F ∗} and {F ∗} and their places in the terms
have been chosen to make keeping track of the modes of subterms as easy as possible. For
both symbols {F ∗} and {F ∗}, the part of the term that is left of the symbol is at mode PshC ,
while the part that is right of the symbol is at mode PshD. The type formers ({F ∗} → −)
and the term former (λ {F ∗} 7→ −) go from the mode PshD to PshC , whereas the term
former (− {F ∗}) goes from the mode PshC to the mode PshD.

3.2 Modalities are applicative functors
As a first demonstration of the syntax of modalities, we equip the modality ({F ∗} → −)
with the structure of an applicative functor [27], defined analogously to the reader monad
(A → −). This structure is given by an operation

(_ ⊛ _) : ∀A B (f : {F ∗} → (a : A {F ∗}) → B {F ∗} a)(a : {F ∗} → A {F ∗})
→ ({F ∗} → B {F ∗} (a {F ∗}))

f ⊛ a ≜ λ {F ∗} 7→ (f {F ∗}) (a {F ∗})

2 Here the notation Y (x, {F ∗}) is an informal way to keep track of the fact that Y is dependent over the
context (x : X, {F ∗}).
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This provides a concise notation to apply functions under the modality. If f is an n-ary
function under the modality, and a1, . . . , an are arguments under the modality, we can write
the application f ⊛ a1 ⊛ · · · ⊛ an instead of (λ {F ∗} 7→ (f {F ∗}) (a1 {F ∗}) · · · (an {F ∗})).

When f is a global function of the presheaf model PshD, we write f $ a1 ⊛ · · · ⊛ an

instead of (λ {F ∗} 7→ f) ⊛ a1 ⊛ . . .⊛ an.

3.3 Preservation of context extensions
The last component that we need for an internal definition of morphism of models of TΠ is an
internal way to describe preservation of extended contexts of locally representable presheaves.
The preservation of context extensions can be expressed without assuming that the extended
contexts actually exist, i.e. without assuming that the presheaves are locally representable;
in that case we talk about preservation of virtual context extensions.

▶ Definition 3 (Internally to PshC). Let AC : PshC and AD : {F ∗} → PshD be presheaves
over C and D, and FA : ∀(a : AC){F ∗} → AD {F ∗} be an action of F on the elements of AC .
We say that FA preserves virtual context extensions if for every dependent presheaf
P : ∀{F ∗}(a : AD {F ∗}) → PshD, the canonical comparison map

τ : (∀{F ∗}(a : AD {F ∗}) → P {F ∗} a) → (∀(a : AC){F ∗} → P {F ∗} (FA a {F ∗}))
τ(p) ≜ λa{F ∗} 7→ p {F ∗} (FA a {F ∗})

is an isomorphism. In other words, FA preserves virtual context extensions when the modality
({F ∗} → −) commutes with quantification over AC and AD.

This provides a notation to define an element p of (∀{F ∗}(a : AD {F ∗}) → P {F ∗} a)
using pattern matching: we write

p {F ∗} (FA a {F ∗}) ≜ q a {F ∗}

to define p as the unique solution of that equation (p = τ−1(λa{F ∗} 7→ q a {F ∗})). ⌟

In Appendix C.1 we show that the internal description of preservation of context extensions
coincides with the external notion of preservation up to isomorphism.

3.4 Morphisms of models
Let F : C → D be a morphism of models of TΠ,B. We now show that its structure can fully
be described in the internal language of PshC .

Its actions on types and terms can equivalently be given by the following global elements.

FTy : (A : TyC) → ({F ∗} → TyD)

FTm : ∀A (a : TmC) → ({F ∗} → TmD (FTy A {F ∗}))

The preservation of context extensions by F is equivalent to the fact that FTm preserves
virtual context extensions in the sense of Definition 3. We can use that fact to obtain the
following actions on derived sorts.

F [X]Ty : (A : XC → TyC) → (∀{F ∗} (x : XD) → TyD)

F [X]Tm : ∀A (a : (x : XC) → TmC (A x)) → (∀{F ∗} (x : XD) → TmD(F [X]Ty A {F ∗}(x)))
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They are defined as follows, using the pattern matching notation of Definition 3.

F [X]Ty A {F ∗} (FX x {F ∗}) ≜ FTy (A x) {F ∗}

F [X]Tm a {F ∗} (FX x {F ∗}) ≜ FTm (a x) {F ∗}

Finally, the preservation of the operations can simply be described by the following equations.

FTy (ΠC A B) {F ∗} = ΠD (FTy A {F ∗}) (F [Tm]Ty B {F ∗})
FTy (appC f a) {F ∗} = appD (FTm f {F ∗}) (FTm a {F ∗})
FTy BC {F ∗} = BD

FTy trueC {F ∗} = trueD

FTy falseC {F ∗} = falseD

FTy (elimC
B t f b) {F ∗} = elimD

B (F [Tm]Ty P {F ∗}) (FTm t {F ∗}) (FTm f {F ∗}) (FTm b {F ∗})

We can then derive analogous equations for F [X]Ty and F [X]Tm. For instance,

F [X]Ty (λx 7→ ΠC (A x) (B x)) {F ∗} x

= ΠD (F [X]Ty A {F ∗} x) (λa 7→ F [X,Tm]Ty B {F ∗} (x, a)).

Indeed, by Definition 3, it suffices to show that equation when x = FX x′ {F ∗}. It then
follows from the base equation for FTy (ΠC (A x′) (B x′)).

We can also derive strengthening equations. For example, when A does not depend on
X, we have F [X]Ty (λx 7→ A) {F ∗} = λx 7→ FTy A {F ∗}.
▶ Remark 4. The notion of morphism of models unfolds externally to the verbose notion of
algebra morphism for the QIIT signature of Remark 2, except that we do not require context
extension to be preserved strictly. A standard argument shows that initial algebras for the
QIIT are biinitial in our sense. A similar remark holds for the notion of displayed model
(and their sections) that will be defined in Section 4.

4 Relative induction principles

In this section we state our relative induction principles using the notion of displayed model
without context extensions. The full proofs of these relative induction principles are given in
the appendix.

We fix a base model S of TΠ,B and a functor F : C → S.

▶ Definition 5. A displayed model without context extensions over F : C → S consists
of the following components, specified internally to PshC :

Presheaves of displayed types and terms.

Ty• : (A : {F ∗} → TyS) → PshC

Tm• : ∀A (A• : Ty• A)(a : {F ∗} → TmS (A {F ∗})) → PshC

They correspond to the motives of an induction principle.
Displayed variants of the type-theoretic operations of TΠ,B. They are the methods of the
induction principle.

Π• : ∀A B (A• : Ty• A)(B• : {a}(a• : Ty• A• a) → Ty• (B ⊛ a))
→ Ty• (ΠS $ A⊛B)

app• : ∀A B f a (A• : Ty• A)(B• : {a}(a• : Ty• A• a) → Ty• (B ⊛ a))
→ (Tm• (Π• A• B•) f) ≃ ((a• : Ty• A• a) → Tm• (B• a•) (appS $ f ⊛ a))
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B• : Ty• (λ{F ∗} 7→ B)
true• : Tm• B• (λ{F ∗} 7→ true)
false• : Tm• B• (λ{F ∗} 7→ false)
elim•

B : ∀P t f b (P • : ∀x (x• : Tm• B• x) → Ty• (P ⊛ x))
(t• : Tm• (P • true•) t)(f• : Tm• (P • false•) f)
→ (b• : Tm• B• b) → Tm• (P • b•) b

Satisfying displayed variants of the type-theoretic equations3 of TΠ,B.

elim•
B P • t• f• true• = t•

elim•
B P • t• f• false• = f• ⌟

A displayed model without context extensions has context extensions when for any A

and A•, the first projection map

(a : {F ∗} → TmS (A {F ∗})) × (a• : Tm• A• a) λ(a,a•)7→a−−−−−−−→ ({F ∗} → TmS (A {F ∗}))

has a locally representable domain and preserves context extensions.
In Appendix C.3 we give an internal definition of section of displayed models with context

extensions. It is similar to the definition of morphism of models. The induction principle of
the biinitial model 0TΠ,B is the statement that any displayed model with context extensions
over 0TΠ,B admits a section.

While (displayed) models without context extensions are not well-behaved, we show that
they can be replaced by (displayed) models with context extensions.

▶ Definition 6. A factorization (C Y−→ P G−→ S,S†) of a global displayed model without
context extensions S• over F : C → S consists of a factorization C Y−→ P G−→ S of F and a
displayed model with context extensions S† over G : P → S, such that Y : C → P is fully
faithful and equipped with bijective actions on displayed types and terms. ⌟

▶ Construction 7. We construct a factorization (C Y−→ P G−→ S,S†) of any model without
context extensions S• over F : C → S.

Construction sketch. We give the full construction in the appendix. We see P as analogous
to the presheaf category over C, but in the slice 2-category (Cat/S). Indeed, a generalization
of the Yoneda lemma holds for Y : C → P . In particular Y : C → P is fully faithful.

Equivalently, it could be defined as the pullback along よ : S → Ŝ of the Artin gluing
G → Ŝ of F∗ : Ŝ → Ĉ.

It is well-known that given a base model C of type theory, that model can be extended to
the presheaf category Ĉ in such a way that the Yoneda embedding よ : C → Ĉ is a morphism
of models with bijective actions on types and terms. This is indeed the justification for one of
the intended models of two-level type theory [4]. This construction does not actually depend
on the context extensions in the base model C. The construction of the displayed model S†

over G : P → S is a generalization of this construction to displayed models. ◀

3 Note that these equations are well-typed because of the corresponding equations in S. As presheaves
support equality reflection, we don’t have to write transports.
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We now assume that we have a section S0 of the displayed model without context
extensions S† constructed in Construction 7.

In general, we want more than just the section S0. Indeed, if we take a type A of S
over a context F Γ for some Γ : |C|, we can apply the action of S0 on types to obtain a
displayed type STy

0 A of S† over S0 (F Γ). We would rather have a displayed type of S• over
Γ. It suffices to have a morphism αΓ : Y Γ → S0 (F Γ). We can then transport STy

0 A to
a displayed type (STy

0 A)[αΓ] of S† over Y Γ. Since Y is equipped with a bijective action
Y Ty on displayed types, this provides a displayed type Y Ty,−1 (STy

0 A)[αΓ] of S• over Γ, as
desired. In general, we want to have a full natural transformation α : Y ⇒ (F · S0).

It is useful to consider the universal setting under which such a natural transformation is
available.

▶ Definition 8. The displayed inserter I(S•) is a category equipped with a functor
I : I(S•) → C and with a natural transformation ι : (I · Y ) ⇒ (I · F · S0) such that
(ι · P ) = 1(I·F ). It is the final object among such categories: given any other category J with
J : J → C and β : (J · Y ) ⇒ (J · F · S0) such that (β · P ) = 1(J·S0), there exists a unique
functor X : J → I(S•) such that J = (X · I) and β = (X · α). ⌟

Internally to PshI(S•), we then have the following operations:

S[X]Ty
ι : ∀{I∗}(A : {F ∗} → X → Ty) x (x• : X• x) → Ty• (A⊛ x)

S[X]Tm
ι : ∀{I∗} A (a : ∀{F ∗} x → Tm (A {F ∗} x)) x (x• : X• x)

→ Tm• (S[X]Ty
ι {I∗} A x x•) (a⊛ x),

where X• is defined by induction on the telescope X. They preserve all type-theoretic
operations:

S[X]Ty
ι {I∗} (λ{F ∗} x 7→ Π (A {F ∗} x) (B {F ∗} x)) x•

= Π• (S[X]Ty
ι {I∗} A x•) (λa• 7→ S[X,A]Ty

ι {I∗} B (x•, a•))

S[X]Tm
ι {I∗} (λ{F ∗} x 7→ app (f {F ∗} x) (a {F ∗} x)) x•

= app• (S[X]Tm
ι {I∗} f x•) (S[X]Ty

ι {I∗} a x•)

S[X]Ty
ι {I∗} (λ{F ∗} x 7→ B) x• = B•

S[X]Tm
ι {I∗} (λ{F ∗} x 7→ true) x• = true•

S[X]Tm
ι {I∗} (λ{F ∗} x 7→ false) x• = false•

S[X]Tm
ι {I∗} (λ{F ∗} x 7→ elimB (P {F ∗} x) (t {F ∗} x) (f {F ∗} x) (b {F ∗} x)) x•

= elim•
B (λb• 7→ S[X,Tm]Ty

ι {I∗} P (x•, b•))

(S[X]Tm
ι {I∗} t x•) (S[X]Tm

ι {I∗} f x•) (S[X]Tm
ι {I∗} b x•)

▶ Definition 9. A relative section Sα of a factorization (C Y−→ P G−→ S,S†) of a displayed
model without context extensions S• over F : C → S consists of a section S0 of the displayed
model with context extensions S† along with a natural transformation α : Y ⇒ (F · S0) such
that (α ·G) = 1F , or equivalently with a section ⟨α⟩ : C → I(S•) of I : I(S•) → C. ⌟

A relative section Sα has actions on types and terms, obtained by pulling S[X]Ty
ι and



12 Relative induction principles for type theories

S
[X]Tm
ι along ⟨α⟩.

S[X]Ty
α : ∀(A : {F ∗} → X → Ty) x (x• : X• x) → Ty• (A⊛ x)

S[X]Tm
α : ∀A (a : ∀{F ∗} x → Tm (A {F ∗} x)) x (x• : X• x)

→ Tm• (S[X]Ty
α A x x•) (a⊛ x),

A displayed model without context extension over the biinitial model does not necessarily
admit a relative section; this depends on the functor F : C → 0T. Depending on the universal
property of C, we need to provide some additional data in order to construct ⟨α⟩ : C → I(0•

T).
Thus, we get a different induction principle for every functor F : C → 0T into 0T, which we
call the induction principle relative to F . We now state several of these relative induction
principles, for our example type theory TΠ,B and for cubical type theory CTT.

▶ Lemma 10 (Induction principle relative to {⋄} → 0TΠ,B). Denote by {⋄} the terminal
category (which should rather be seen here as the initial category equipped with a terminal
object), and consider the functor F : {⋄} → 0TΠ,B that selects the empty context of 0TΠ,B .

Any global displayed model without context extensions over F admits a relative section. ◀

▶ Definition 11. A renaming algebra over a model S of TΠ,B is a category R with a
terminal object, along with a functor F : R → S preserving the terminal object, a locally
representable dependent presheaf of variables

VarR : (A : {F ∗} → TyS) → RepPshR

and an action on variables var : ∀A (a : Var A) {F ∗} → TmS (A {F ∗}) that preserves context
extensions.

The category of renamings RenS over a model S is defined as the biinitial renaming
algebra over S. We denote the category of renamings of the biinitial model 0TΠ,B by Ren.

▶ Lemma 12 (Induction principle relative to Ren → 0TΠ,B). Let 0•
TΠ,B

be a global displayed
model without context extensions over F : Ren → 0TΠ,B , along with, internally to I(S•), a
global map

var• : ∀{I∗}(A : {F ∗} → Ty)(a : Var A) → Tm• (STy
ι {I∗} A) (var a).

Then there exists a relative section Sα of 0•
TΠ,B

. ◀

The relative section also satisfies a computation rule that relates STm
α (varA a) and var•.

We also state relative induction principles that can be used to prove canonicity and
normalization of cubical type theory.

▶ Definition 13. A cubical CwF is a CwF C equipped with a locally representable interval
presheaf with two endpoints

IC : RepPshC ,

0C , 1C : IC . ⌟

A model of cubical type theory (CTT) is a cubical CwF equipped with some choice of
type-theoretic structures, such as Π-types, path types, glue types, etc.
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▶ Definition 14. A (cartesian) cubical algebra over a model S of CTT is a category C
with a terminal object, along with a functor F : C → S preserving the terminal object, a
locally representable interval presheaf IC : RepPshC with two endpoints 0C , 1C : IC and an
action int : IC → {F ∗} → IS that preserves context extensions and the endpoints.

The category of cubes □S over a model S is defined as the biinitial cubical algebra over S.
We denote by □ the category of cubes of the biinitial model 0CTT of cubical type theory. ⌟

▶ Lemma 15 (Induction principle relative to □ → 0CTT). Let 0•
CTT be a global displayed model

without context extensions over F : □ → 0CTT, along with a map

int• : (i : I□) → I• (int i)

such that int• 0□ = 0• and int• 1□ = 1•.
Then there exists a relative section Sα of 0•

CTT. ◀

▶ Definition 16. A (cartesian) cubical atomic algebra over a model S of CTT is a
category C with a terminal object, along with a functor F : C → S preserving the terminal
object and with the structures of a cubical algebra (IC , 0C , 1C , int) and of a renaming algebra
(VarC , var).

The category of cubical atomic contexts A□ is the biinitial cubical algebra over the biinitial
model 0CTT of cubical type theory. ⌟

▶ Lemma 17 (Induction principle relative to A□ → 0CTT). Let 0•
CTT be a global displayed

model without context extensions over F : A□ → 0CTT, along with, internally to PshI(0•
CTT),

global maps

var• : ∀{I∗} (A : {F ∗} → Ty)(a : Var A) → Tm• (STy
ι {I∗} A) (var a),

int• : ∀{I∗} (i : IA□) → I• (int i),

such that int• {I∗} 0A□ = 0• and int• {I∗} 1A□ = 1•.
Then there exists a relative section Sα of 0•

CTT. ◀

5 Applications

We give a few applications of our relative induction principles. Only the canonicity proof is
detailed here; for most of the other proofs we only give the definition of the displayed types.
A more detailed normalization proof is given in Appendix D.

5.1 Canonicity
In order to prove canonicity for 0TΠ,B , we construct a displayed model without context
extensions 0•

TΠ,B
over F : {⋄} → 0TΠ,B , so as to apply Lemma 10 to it. It is defined in the in

the internal language of Psh{⋄} (= Set).
A type of 0•

TΠ,B
displayed over a type A : {F ∗} → Ty is a set-valued proof-relevant

logical predicate over the terms of type A. A term of 0•
TΠ,B

of type A• displayed over a term
a : {F ∗} → Tm (A {F ∗}) is an witness of the fact that a satisfies the predicate A•.

Ty• A ≜ (a : {F ∗} → Tm (A {F ∗})) → Set
Tm• A• a ≜ A• a
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The logical predicate over Π A B characterizes the functions that preserve the logical
predicate of A and B.

Π• A• B• ≜ λ f 7→ (∀a (a• : A• a) → B• (app $ f ⊛ a))
app• f• a• ≜ f• a•

Finally, B• : ({F ∗} → Tm B) → Set characterizes canonical natural numbers, and
is defined as the inductive family generated by true• : B• (λ {F ∗} 7→ true) and false• :
B• (λ {F ∗} 7→ false). The displayed natural number eliminator elim•

B is then obtained from
the elimination principle of B•.

Lemma 10 now provides a relative section Sα of 0•
TΠ,B

.
Internally to Psh{⋄}, take any global boolean term (b : {F ∗} → Tm B). Note that

since F : {⋄} → 0TΠ,B selects the empty context, the dependent right adjoint F ∗ restricts
presheaves over 0TΠ,B to the empty context. Thus b is indeed a closed boolean term.

We can apply the action of the relative section Sα to b. We obtain an element STm
α b of

Ty• (STy
α (λ {F ∗} 7→ B)) b. We compute STy

α (λ {F ∗} 7→ B) = B•. Therefore we have an
element of B• b. This proves that b is canonical.

5.2 Normalization
The normalization proof of [12] can be expressed using the induction principle relative to
F : Ren → 0TΠ,B , namely Lemma 12.

Internally to PshRen , we have inductively defined families NfTy : Ty → PshRen , Nf :
∀A → ({F ∗} → Tm (A {F ∗})) → PshRen and Ne : ∀A → ({F ∗} → Tm (A {F ∗})) → PshRen

describing the normal forms of types, the normal forms of terms and the neutral terms.
A displayed type A• : Ty• A is a tuple (A•

0, A
•
p, A

•
α, A

•
β) where:

A•
0 : NfTy A is a witness that the type A admits a normal form;

A•
p : ({F ∗} → Tm (A {F ∗})) → PshRen is a proof-relevant logical predicate over terms of

type A, valued in presheaves over Ren;
A•

α : ∀a → Ne a → A•
p a is a natural transformation, usually called reflect or quote,

witnessing the fact that all neutral terms satisfy the logical predicate A•
p;

A•
β : ∀a → A•

p a → Nf a is a natural transformation, usually called reify or unquote,
witnessing the fact that terms satisfying the logical predicate A•

p admit normal forms.

5.3 Canonicity for cubical type theory
The proof of canonicity for cubical type theory from [13] can be reformulated using the
induction principle relative to F : □ → 0CTT, i.e. Lemma 15. Internally to Psh□, we have a
universe Ufib of fibrant cubical sets. A displayed type A• : Ty• A is a logical predicate valued
in fibrant cubical sets:

A• : ({F ∗} → Tm (A {F ∗})) → Ufib.

5.4 Normalization for cubical type theory
The proof of normalization for cubical type theory from [35] can be reformulated using the
induction principle relative to F : A□ → 0CTT, that is Lemma 17.
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5.5 Syntactic parametricity
Syntactic parametricity can be described by a displayed model without context extensions over
id : 0T → 0T. A displayed type A• : Ty• A is a type-valued logical predicate A• : Tm A → Ty.

However, we do not have a relative section of this displayed model. We have the displayed
inserter category I(0•

T); but the map I : I(0•
T) → 0T does not admit a section. Various

applications of syntactic parametricity can use various functors into I(0•
T). For instance, if

we only care about closed terms, we can consider the functor {⋄} → I(0•
T). This is sufficient

to prove that any closed term f : Tm ((A : U) → A → A) is homotopic to the polymorphic
identity function.

5.6 Conservativity
The conservativity of extensional type theory (ETT) over intensional type theory (ITT) can
be obtained using an induction principle relative to F : RenITT → 0ETT.

The proof involves some congruence (∼) over 0ITT; this consists of equivalence relations
on types and terms preserving all type-theoretic operations. A displayed type A• : Ty• A is
an element of the quotient of (A0 : TyITT) × (FTy A0 = A) by this relation. Displayed terms
are defined similarly. Hofmann’s proof involves the quotient model (0ITT/ ∼), but by working
internally to PshRenITT we can avoid the (easy but tedious) construction of that model.

6 Future work

While we have focused on the type theory TΠ,B in this document, we hope that it is clear
that these constructions generalize to other type theories. Nevertheless, it would be good
to actually prove that all of these constructions can be done for arbitrary type theories.
In [24], a syntactic definition of quotient inductive-inductive type signature is given, along
with semantics. It should be possible to extend this approach and give general definitions of
models, morphisms, displayed models (without context extensions), etc., for arbitrary type
theory signatures following [11]. Other definitions of the general notion of type theory have
been proposed recently [7, 37]. One advantage of the approach of [24] is that its semantics are
given by induction on the syntax of signatures; and thus the definitions of models, morphisms,
etc., for a given type theory signature can be computed.

The current proof assistants based on dependent type theory natively support various
variants of inductive types. We believe that the ideas presented in this paper could help
towards the implementation of proof assistants that natively support syntax with bindings.

We have used our framework to give short proofs of canonicity, normalization, para-
metricity and conservativity results for dependent type theory. We see them as non-trivial
results that are also well-understood; and thus serve as good benchmarks for our induction
principles. We hope to apply this framework the proof of novel results in the future.

We would also like to extend this work to other kinds of context extensions and binding
structures, such as affine binding structures. An affine variable cannot be duplicated (in
the absence of additional structure) and can therefore be used at most once. This should
give a description of the category of weakenings as the initial object of some category. The
category of weakenings is similar to the category of renamings, but without the ability to
duplicate variables. Using the category of weakenings in a normalization proof allows for
non-linear equations in the type theory, such as the group equation x · x−1 = 1. The internal
language of presheaves over the category of weakenings is also the right setting for proving
the decidability of equality.
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A The dependent right adjoints F ∗ and F∗

In this section we give explicit definitions of the adjunctions F! ⊣ F ∗ and F ∗ ⊣ F∗ and their
dependent versions F! ⊣ F ∗ and F ∗ ⊣ F∗, given a functor F : C → D. These definitions are
standard category theory, we only record them for the benefit of the reader.

The precomposition functor:

F ∗ : PshD → PshC

|F ∗ X ′|Γ ≜ |X ′|F Γ

x[ρ]F ∗ X′ ≜ x[F ρ]X′

|F ∗ f ′|Γ x ≜ |f ′|F Γ x

Its left adjoint:

F! : PshC → PshD

|F! X|Γ′ ≜
(
(Γ : |C|) × D(Γ′ → F Γ) × |X|Γ

)
/∼ where (Γ, δ′, x[ρ]X) ∼ (∆, F ρ ◦ δ′, x)

(Γ, δ′, x)[ρ′]F! X ≜ (Γ, δ′ ◦ ρ′, x)
|F! f |Γ′ (Γ, δ′, x) ≜ (Γ, δ′, |f |Γ x)

The unit of the adjunction F! ⊣ F ∗ is given by

ηX : X → (F ∗ (F! X))
|ηX |Γ x ≜ (Γ, idF Γ, x)

while the hom-set definition of the adjunction is given by an isomorphism

ϕ : (F! X → X ′) ∼= (X → F ∗ X ′) : ϕ−1

natural in X and X ′, where ϕ f ′ ≜ F ∗ f ′ ◦ ηX i.e. |ϕ f ′|Γ x = |f ′|F Γ (|ηX |Γ x) and∣∣ϕ−1 f
∣∣
Γ′ (Γ, δ′, x) ≜ (|f |Γ x)[δ′]X . The dependent right adjoint of F!:

F ∗ : DepPshD (F! X) → DepPshC X

|F ∗ A′|Γ x ≜ |A′|F Γ (|ηX |Γ x)
a′[ρ]F ∗ A′ ≜ a′[F ρ]A′
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We have F ∗ A′ ◦ f = F ∗ (A′ ◦ F! f). The dependent adjunction F! ⊣ F ∗ is an isomorphism

ψ : PshD(
(x′ : F! X) → A′(x′)

) ∼= PshC(
(x : X) → (F ∗ A′)(x)

)
: ψ−1

natural in X, where |ψ f ′|Γ x ≜ |f ′|F Γ (|ηX |Γ x) and
∣∣ψ−1 f

∣∣
Γ′ (Γ, δ′, x) ≜ (|f |Γx)[δ′]A′ .

The right adjoint of F ∗:

F∗ : PshC → PshD

|F∗ X|Γ′ ≜
{
α : (Γ : |C|)(δ′ : D(F Γ → Γ′)) → |X|Γ | α Γ (δ′ ◦ F σ) = (α ∆ δ′)[σ]X

}
α[ρ′]F∗ X ≜ λΓ δ′ 7→ α Γ (ρ′ ◦ δ′)
|F∗ f |Γ′ α ≜ λΓ δ′ 7→ |f |Γ (α Γ δ′)

The adjunction is an isomorphism ϕ : (F ∗ X ′ → X) ∼= (X ′ → F∗ X) : ϕ−1 natural in X and
X ′ where |ϕ f |Γ′ x′ ≜ λΓ δ′ 7→ |f |Γ (x′[δ′]X′) and

∣∣ϕ−1 f ′
∣∣
Γ x′ ≜ |f ′|F Γ x′ Γ idF Γ. The

dependent right adjoint of F ∗:

F∗ : DepPshC (F ∗ X ′) → DepPshD X ′

|F∗ A|Γ′ x
′ ≜

{
α : (Γ : |C|)(δ′ : D(F Γ → Γ′)) → |A|Γ (x′[δ′]X′) |
α Γ (δ′ ◦ F σ) = (α ∆ δ′)[σ]A

}
α[ρ′]F∗ A ≜ λΓ δ′ 7→ α Γ (ρ′ ◦ δ′)

We have F∗ A ◦ f ′ = F ∗ (A ◦ F! f
′). The dependent adjunction F ∗ ⊣ F∗ is an isomorphism

ψ : PshC(
(x : F ∗ X ′) → A(x)

) ∼= PshD(
(x′ : X ′) → (F∗ A)(x′)

)
: ψ−1

natural in X’ where |ψ f |Γ′ x′ ≜ λΓ δ′ 7→ |f |Γ (x′[δ′]X′) and
∣∣ψ−1 f ′

∣∣
Γ x

′ ≜ |f ′|F Γ x
′ Γ idF Γ.

B Multimodal Type Theory

The proofs and constructions performed in the appendix involve more than two presheaf
categories and more than a single dependent right adjoint. We rely on Multimodal Type
Theory [15] to provide a single language that embeds the internal languages of all of those
presheaf categories and the dependent right adjoints between them.

Our variant of Multimodal Type Theory differs from the one presented in [15] in a couple
of ways. We keep the same syntax for dependent right adjoints as in Section 3; whereas [15]
uses weak dependent right adjoints instead, which come with a positive elimination rule
instead of the operation (− {µ}). So as to remove some of the ambiguities of the informal
syntax and improve readability in the presence of multiple modalities, we annotate locks
with tick variables. The extension of the syntax of Multimodal Type Theory by ticks was
used by [28] for the same purpose. Ticks were originally introduced in [6].

B.1 Multiple modalities
Multiple modalities are given semantically by multiple dependent right adjoints. Given
a functor F : C → D, we already have two dependent right adjoints F ∗ and F∗, which
give modalities ({F ∗} → −) and ({F∗} → −). Dependent right adjoints can be composed,
and we also have modalities ({F∗F

∗} → −), ({F ∗F∗} → −), etc., where ({F∗F
∗} → −) =

({F∗}{F ∗} → −).
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B.1.1 Ticks
In presence of multiple modalities, or of non-trivial relations between the modalities, the
notation (− {µ}) becomes ambiguous. Suppose for instance that µ is a idempotent dependent
right adjoint (µµ = µ). Then for any context Γ, we have Γ, {µ}, {µ} = Γ, {µ}. If we write
(a {µ}) in the ambient context (Γ, {µ}), it is unclear whether the subterm a should live in
the context Γ or Γ, {µ}.

To avoid this kind of ambiguity, we will annotate locks with ticks. In the above example,
we would have Γ, {m : µ}, {n : µ} = Γ, {mn : µ}; and we would write either (a {n}) if a lives
over Γ, {m : µ} or (a {mn}) if a lives over Γ.

We use m, n, o, etc. for tick variables. The tick variables refer to the locks of the ambient
context. A tick is a formal composition of tick variables, corresponding to the composition
of some adjacent locks in the ambient context. We write • for the empty tick, corresponding
to the empty composition. We write m, n, o, etc. to refer to an arbitrary tick.

If Γ is a context, then the subterms of ({m : µ} → −) and (λ {m : µ} 7→ −) live over the
context Γ, {m : µ}.

The operation (− {m}) now unbinds the last tick variable of the context; or more generally
some suffix of the tick variables. The ordinary variables that occur after these tick variables
are implicitly dropped from the current context.

We omit ticks when no ambiguity can arise. In fact, we don’t need to use ticks outside of
this section.

B.1.2 Morphisms between modalities
Finally, we have morphisms between modalities. If µ and ν are two parallel dependent
right adjoints, whose left adjoints are respectively Lµ and Lν , a morphism α : µ ⇒ ν is
a natural transformation α : Lµ ⇒ Lν . For example, given F : C → D, we have a counit
εF : F∗F

∗ ⇒ 1, and a unit ηF : 1 ⇒ F ∗F∗, induced by the adjunction (F! ⊣ F ∗).
Given α : µ ⇒ ν, we obtain a coercion operation −[α : m/n] that sends types and terms

from the context Γ, {n : ν} to the context Γ, {m : µ}. Semantically, this operation is the
presheaf restriction operation of types and terms along the morphism |α|Γ : (Γ, {m : µ}) →
(Γ, {n : ν}).

This induces a map

coeα : ∀(A : {n : ν} → Psh) → ({n : ν} → A {n}) → ({m : µ} → (A {n})[α : m/n])
coeα a ≜ λ {m : µ} 7→ (a {n})[α : m/n]

For another example, consider composable functors F : C → D and G : D → E . We have
a natural isomorphism α : (FG)! ≃ F!G!. This induces isomorphisms ({m : (FG)∗} → A) ≃
({fg : F ∗G∗} → A), whose components are

λa {fg : F ∗G∗} 7→ (a {m})[α : fg/m]

and

λa {m : (FG)∗} 7→ (a {fg})[α−1 : m/fg].

We omit the natural transformation when it can be inferred. For instance we could have
written [fg/m] and [m/fg] above.

More generally, the operation [α : m/n] can be applied to any type or term over a context
of the form (Γ, {n : ν},∆) to send it to the context (Γ, {m : µ},∆[α : m/n]), where ∆ is an
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extension of the context (Γ, {n : ν}) by variable bindings and locks, and ∆[α : m/n] applies the
operation [α : m/n] to every type in ∆. In that case it is interpreted semantically by restriction
along the weakening (Γ, {m : µ},∆[α : m/n]) → (Γ, {m : µ},∆) of |α|Γ : (Γ, {m : µ}) →
(Γ, {n : ν}).

The operation [α : m/n] commutes with all natural type-theoretic operations. For example,
(A×B)[α : m/n] = (A[α : m/n] ×B[α : m/n]).

It commutes with binders:

((a : A) → B a)[α : m/n] = (a : A[α : m/n]) → B[α : m/n] a.

Note that [α : m/n] is not applied to the bound variable a, as it is already applied to the
type A of a.

It also commutes with ({µ} → −) and (λ {µ} 7→ −) for a dependent right adjoint µ:

({o : µ} → A)[α : m/n] = ({o : µ} → A[α : m/n])

(λ {o : µ} 7→ a)[α : m/n] = (λ {o : µ} 7→ a[α : m/n])

It commutes with (− {o}) when o is a tick variable that is bound in ∆.
The operation [α : m/nq] (where nq is a non-empty composition of tick variables ending

in q) can only get stuck on (− {q}) (or more generally on (− {oq})). The operation [α : m/•]
(where • is the empty composition of ticks) can only be stuck on a variable.

Finally, these operations satisfy some 2-naturality conditions. Given two vertically
composable morphisms α : µ ⇒ ν and β : ν ⇒ ξ, we have

(−)[β : n/x][α : m/n] = (−)[αβ : m/x].

Given α : µ ⇒ ν and a dependent right adjoint ξ such that the whiskering αξ can be formed,
we have

(−)[αξ : mx/nx] = (−)[α : m/n].

Similarly, when we can form the whiskering ξα, we have

(−)[ξα : xm/xn] = (−)[α : m/n].

C Constructions and Proofs

C.1 Preservation of context extensions
In this subsection, we show that preservation of context extensions as defined in Definition 3
corresponds externally to preservation of context extension as usually defined. Let

∫
denote

the category of elements functor.

▶ Lemma 18. A dependent presheaf Y : DepPshC X is locally representable exactly if the
projection functor

∫
(X,Y ) →

∫
X is a left adjoint.

Proof. This is an easy computation. In the notation of Definition 1, at object (Γ, x), the
right adjoint is (Γ ▷ Y|x, x[pY

x ], qY
x ) and the counit is pY

x : (Γ ▷ Y|x, x[pY
x ]) → (Γ, x). ◀

The setting of the following statement is a functor F : C → D. We had omitted universe
indices in Definition 3 for readability of the main body. Elaborating, we say FA preserves
i-small virtual context extension if the stated condition is satisfied for P an i-small dependent
presheaf. We say that FA preserves virtual context extension if it preserves i-small virtual
context extension for all i.
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▶ Proposition 19. Let X be an i-small presheaf over C, AC an i-small dependent presheaf over
X, AD an i-small dependent presheaf over F! X, and FA a dependent natural transformation
from AC to F ∗ AD over X. This data corresponds to the premises of Definition 3, interpreted
over the context X of the presheaf model PshC .

The following conditions are equivalent:

(i) FA preserves i-small virtual context extension,
(ii) FA preserves j-small virtual context extension for a fixed j ≥ i,

(iii) FA preserves virtual context extension,

and assuming that AC and AD are locally representable:

(iv) for Γ : |C| and x : |X|Γ, given a representation

qAC

x :
∣∣∣AC

|x

∣∣∣ (Γ ▷AC
|x,p

AC

x ),

then∣∣FA
∣∣
Γ▷AC

|x

x[ρ] qAC

x :
∣∣∣∣AD

|(|ηF
X |Γ

x)

∣∣∣∣ (F (Γ ▷AC
|x), F pAC

x )

is a representation.
(v) for Γ and x as above, the comparison morphism〈

F pAC

x ,
∣∣FA

∣∣
Γ▷AC

|x

(
x[pAC

x ]
)

qAC

x

〉
: F (Γ ▷AC

|x) → (F Γ) ▷AD
|(|ηF

X |Γ
x)

is invertible.

Here, ηF
X : X → F ∗ (F! X) is the component at X of the unit of the adjunction (F! ⊣ F ∗).

Proof. We have a strictly commuting square∫
(X,AC)

∫
(F!X,A

D)

∫
X

∫
F!X

v

pC pD

u

(1)

of categories where pC and pD are projections, u is given by the unit of the adjunction F! ⊣ F ∗,
and v is induced by FA.

Restriction along the maps in (1) induces a strictly commuting square

DepPshC (X,AC) DepPshD (F!X,A
D)

DepPshC X DepPshD ∫
F!X.

v∗

(pC)∗ (pD)∗

u∗

(2)

We have adjunctions (pC)∗ ⊣ (pC)∗ and (pD)∗ ⊣ (pD)∗ where (pC)∗ takes Π-types over AC and
(pD)∗ takes Π-types along AD. Regarding the identity as a natural transformation in (2)
from the right-top to the bottom-left composite and taking its mate with respect to these
adjunctions, we obtain a natural transformation

DepPshC (X,AC) DepPshD (F!X,A
D)

DepPshC X DepPshD F!X.

(pC)∗

v∗

(pD)∗

u∗

τ
(3)
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This is the comparison map τ from Definition 3. Conditions (i), (ii), (iii) state that τ is
invertible at dependent presheaves over (F!X,A

D) that are i-small, j-small for a fixed j ≥ i,
and j-small for any j, respectively.

The above categories may be seen as presheaf categories. Switching to that presentation
and transposing the preceding square to left adjoints, we obtain the natural transformation

Psh
∫

(X,AC) Psh
∫

(F!X,AD)

Psh
∫

X Psh
∫

F!X .

v!

τ

u!

(pC)∗ (pD)∗ (4)

We have that τ is invertible exactly if τ is invertible. By Yoneda, τ is invertible already if τ is
invertible at representables. Reversely, for τ to be invertible at representables, it suffices for
τ to be invertible at applications of v!(pC)∗ to representables. By our smallness assumptions
on X, AC , AD, these applications are i-small. This shows that conditions (i), (ii), (iii) are
equivalent and hold exactly if τ is invertible at representables (which holds exactly if τ and
τ are invertible).

Assume now that AC and AD are locally representable. By Lemma 18, the functors pC

and pD have right adjoints qC and qD, respectively. Regarding the identity as a natural
transformation from the left-bottom to the top-right composite in (1), we take its mate with
respect to these adjunctions, obtaining the natural transformation∫

(X,AC)
∫

(F!X,A
D)

∫
X

∫
F!X.

v

θ

u

qC qD

Condition (v) states that θ is invertible when using the explicit description of qC and qD

given in the proof of Lemma 18. Condition (iv) states the same thing without referring to
particular choices of context extension: given M :

∣∣∫ X∣∣, if (N, f) is terminal in (pC ↓
∫
X),

then (v N, u f) is terminal in (pD ↓
∫
F!X). To see that these conditions are equivalent,

recall that terminal objects are unique up to (unique) isomorphisms.
The process of taking mates commutes with presheaf category formation. Thus, the

natural transformation τ in (3) is equivalent to the restriction action of θ. It follows that τ
in (4) is equivalent to the left Kan extension action of θ. Recall that left Kan extension of
representables is given by the original functor. Thus, τ is invertible at representables exactly
if θ is invertible. This shows that (i) and (iv) are equivalent. ◀

C.2 Displayed categories
Displayed categories were introduced in [1]. The data of a displayed category over a base D
is equivalent to the data of a category C equipped with a functor into D. Many structures
on functors that may seem non-categorical because they involve equalities of objects, such
as fibration structures, are actually well-behaved when seen as structures over displayed
categories. Some of the constructions that follow are more intuitive when thinking about
displayed categories instead of functors. Because Multimodal Type Theory does not have
dependent modes, we have to see displayed categories as functors when working internally.

We write F : C _ D if F is a functor that exhibits C as a displayed category over D.
Given an object x of D, we may write |C|(x) (or C(x) or Cop(x)) for the set of objects of C
displayed over x, that is the set containing the objects x′ : |C| such that F x′ = x. Given
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objects x and y of C and a morphism f : D(F x → F y), we write C(x →f y) for the set of
morphisms of C from x to y that are displayed over f . In other words, C(x →f y) is the set
containing the morphisms f ′ : C(x → y) such that F f ′ = f .

C.3 Sections of displayed models with context extensions
▶ Definition 20. A section of a displayed model with context extensions S• over a functor
F : C _ S consists of a section S : S → C of F (up to a natural isomorphism (S · F ) ≃ 1S)
along with (internally to PshS):

Actions on types and terms.

STy : ∀(A : TyS){S∗} → Ty• (λ{F ∗} → A[S∗F ∗/•])

STm : ∀A (a : TmS A) {S∗} → Tm• (STy A {S∗}) (λ{F ∗} → a[S∗F ∗/•])

where [S∗F ∗/•] is coercion over the natural isomophism (S · F ) ≃ 1S .
Such that for every A : TyS , the total action

(a : TmS A) → ({S∗} → (a : {F ∗} → TmS A[S∗F ∗/•]) × (Tm• (STy A {S∗}) a))

preserves context extensions.
As in the definition of morphisms of models, we can then derive actions on derived sorts.
Given any telescope X of S, we can define, by induction on X, a family

X• : {S∗} → ({F ∗} → XS [S∗F ∗/•]) → PshC ,

along with an action

SX : (x : XS) {S∗} → X• (λ{F ∗} → x[sf/•])

such that the induced total action

(x : XS) → ({S∗} → (x : {F ∗} → XS [sf/•]) × (x• : X• {S∗} x))

has a locally representable codomain and preserves context extensions. We can then define,
using the pattern matching notation of Definition 3,

S[X]Ty : (A : XS → TyS) {S∗} x (x• : X• {S∗} x)
→ Ty• (λ{F ∗} → A[S∗F ∗/•] (x {F ∗}))

S[X]Ty ≜ λA {S∗} (SX x {S∗}) 7→ STy (A x) {S∗}

S[X]Tm : ∀A (a : TmS a) {S∗} x (x• : X• {S∗} x)
→ Tm• (STy A {S∗}) (λ{F ∗} → a[S∗F ∗/•])

S[X]Tm ≜ λa {S∗} (SX x {S∗}) 7→ STm (a x) {S∗}

And such that all type-theoretic operations are preserved. For example,

STy BS = λ{S∗} 7→ B•

STy (elimS
B P t f n) = elim•

B $ S[Tm]Ty P ⊛ STm t⊛ STm f ⊛ STm n

STy (ΠS A B) = Π• $ STy A⊛ S[Tm]Ty B

As in the definition of morphisms of models, we can derive computation rules for S[X]Ty

and S[X]Tm.
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C.4 Displayed presheaf category
In what follows, we need to consider categories of presheaves over large categories, and in
particular categories of presheaves over categories of presheaves. We have to be a bit careful
about sizes. If C is a category, we write Ĉ for the category of ω-small presheaves (functors
into Setω) over C, and PshC for the category of large presheaves (functors into Setω+1) over
C. We only use the internal language of PshC .

The goal of this subsection is to construct the factorization of Construction 7.

▶ Definition 6. A factorization (C Y−→ P G−→ S,S†) of a global displayed model without
context extensions S• over F : C → S consists of a factorization C Y−→ P G−→ S of F and a
displayed model with context extensions S† over G : P → S, such that Y : C → P is fully
faithful and equipped with bijective actions on displayed types and terms. ⌟

▶ Construction 7. We construct a factorization (C Y−→ P G−→ S,S†) of any model without
context extensions S• over F : C → S.

We fix a model S of TΠ,B and a functor F : C _ S for this whose subsection.

▶ Definition 21. We define the displayed presheaf category P along with a projection
functor G : P _ S (which exhibits P as a displayed category over S) and the displayed
Yoneda embedding Y : C → P. The displayed Yoneda embedding is a displayed functor
over S: it satisfies (Y ·G) = F . They are analogous to the usual category of presheaves and
Yoneda embedding, but in the slice 2-category (Cat/S), or equivalently in the 2-category of
displayed categories over S.

C P

S
F

Y

G

An object Γ† of P displayed over an object Γ of S is a dependent presheaf

Γ† : ∀(Θ : Cop)(γ : S(F Θ → Γ)) → Setω.

A morphism f† : P(Γ† →f ∆†) displayed over a morphism f : S(Γ → ∆) is a dependent
natural transformation

f† : ∀(Θ : Cop)(γ : S(F Θ → Γ)) → Γ† γ → ∆† (γ · f).

Given an object Γ : |C|, we define an object |Y |Γ of P displayed over F Γ by

|Y |Γ Θ γ ≜ C(Θ →γ Γ)

As this is both contravariant in Γ and covariant in Θ, this extends to a displayed functor
Y : C → P.

▶ Proposition 22. The category P is equivalent to the comma category (Ĉ ↓ NF ), where
NF : S → Ĉ is the composition of the Yoneda embedding よS : S → Ŝ with F ∗ : Ŝ → Ĉ. ◀

We prove several core properties of G : C _ P and Y : C → P .
The first of these properties is the generalization of the Yoneda lemma to P .
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▶ Lemma 23. There is a natural family of isomorphisms

r : ∀(Γ† : P)(∆ : Cop)(γ : S(F ∆ → Γ)) → Γ† γ ≃ P(|Y |∆ →γ Γ†),

whose components are given by

r Γ† ∆ γ γ† ≜ λΘ δ (δ′ : C(Θ →δ ∆)) 7→ γ†[δ′]
r−1 Γ† ∆ γ γ′ ≜ γ′ ∆ idF ∆ id∆ ◀

▶ Proposition 24. The functor Y : C → P is fully faithful.

Proof. We prove that the actions of Y on displayed morphisms are bijective; this implies
that its total actions are also bijective.

Take two objects Γ and ∆ of C and a base morphism f : S(F ∆ → F Γ). By Lemma 23,
we have |Y |Γ f ≃ P(|Y |∆ →f |Y |Γ); and |Y |Γ f = C(∆ →f Γ) by definition. This determines
a function C(∆ →f Γ) → P(|Y |∆ →f |Y |Γ) that coincides with the action of Y on displayed
morphisms, which is therefore bijective. ◀

▶ Proposition 25. The unit ηY : 1PshC ⇒ (Y! · Y ∗) is an isomorphism.

Proof. This follows from Y being fully faithful (see [25, Prop 4.23]). ◀

As both Y! and Y ∗ admit dependent right adjoints, Proposition 25 induces coercion operations
internally to PshC and PshP .

▶ Lemma 26. Let p : E → C be a Grothendieck fibration. Then pullback along p preserves
left adjoints.

Proof. A standard fact. ◀

In the following, we switch freely between the point of view of a dependent presheaf over
X and a map into X. In particular, a dependent presheaf over X is locally representable
exactly if the corresponding map into X is a representable morphism.

▶ Corollary 27. Let p : E → C be a Grothendieck fibration. Let f ∈ PshC(Y → X) be locally
representable. Then p∗f ∈ PshE(p∗Y → p∗X) is locally representable.

Proof. This is the combination of Lemma 18 and Corollary 27. For this, note that
∫
p∗f is

the pullback of
∫
f along p. ◀

▶ Proposition 28 (Internally to PshP). For every locally representable presheaf A : {G∗} →
RepPshS , the presheaf ({G∗} → A {G∗}) is locally representable.

Proof. We have to show the judgment A : {G∗} → RepPshS ⊢ isRep({G∗} → A {G∗}).
Inhabitants of this type correspond to local representability structures of the dependent
presheaf A : {G∗} → RepPshS ⊢ {G∗} → A {G∗}. This is the image of the universal locally
representable dependent presheaf A : RepPshS ⊢ A under G∗. From Proposition 22, we see
that G∗ is a Grothendieck fibration. We conclude by Corollary 27. ◀

▶ Proposition 29 (Internally to PshP). Given an ω-small presheaf A : {Y∗} → PshC
ω, the

presheaf ({Y∗} → A {Y∗}) is locally representable.
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Proof. We have to show the judgment A : {Y∗} → PshC
ω ⊢ isRep({Y∗} → A {Y∗}). Inhabit-

ants of this type correspond to local representability structures of the dependent presheaf
A : {Y∗} → PshS

ω ⊢ {Y∗} → A {Y∗}. This is the image of the universal dependent presheaf
A : PshS ⊢ A under Y∗. So it suffices to show the following: given an ω-small dependent
presheaf N over M in PshC , the dependent presheaf Y∗N over Y∗M in PshP is locally
representable.

Let us inspect the action of the functor Y∗ on M : PshC . From Appendix A, we have for
Γ : C and Γ† : P(Γ) that |Y∗M |(Γ,Γ†) consists of a dependent natural transformation

(∆ : Cop)(g : P(Y∆, (Γ,Γ†))) → |M |∆.

Regarding C as displayed over S, this writes as

(∆S : Sop)(∆C : Cop(∆C))(u : S(∆S → Γ))(u† : P(Y∆C →u Γ†)) → |M |∆C .

By Lemma 23 (displayed Yoneda), this is naturally isomorphic to the type of dependent
natural transformations

(∆S : Sop)(∆C : Cop(∆C))(u : S(∆S → Γ))(u† : Γ† u)) → |M |∆C .

Similarly, for a dependent presheaf N over M in PshC , we can describe the dependent
presheaf Y∗N over Y∗M in PshP as follows. Given Γ : C and Γ† : P(Γ) and α : |Y∗M |(Γ,Γ†),
then |Y∗N |(Γ,Γ†) α is the type of dependent natural transformations

(∆S : Sop)(∆C : Cop(∆C))(u : S(∆S → Γ))(u† : Γ† u) → |N | (α ∆S ∆C u u
†).

We now show that Y∗N is locally representable. Let (Γ,Γ†) be an object of P and
α : |Y∗M |(Γ,Γ†). We have to define a representing object for the presheaf (over (P/(Γ,Γ†)))

(Y∗N)|α : ((Ω,Ω†) : Pop)(ρ : S(Ω → Γ))(ρ† : P(Ω† →γ Γ†)) → Set∣∣(Y∗N)|α
∣∣ (Ω,Ω†) ρ ρ† ≜ |Y∗N |(Ω,Ω†) (λ∆S ∆C u u

† 7→ α ∆S ∆C (u · ρ) (ρ† u u†))

The extended context is (Γ,Γ▷) where

Γ▷ ∆S ∆C (u : S(∆S → Γ)) ≜ (u† : Γ† ∆S ∆C u) × (n : |N | ∆S ∆C (α ∆S ∆C u u
†))

Note that this is only well-defined because N is ω-small.
The projection morphism p : P(Γ▷ →id Γ†) forgets the component n. The generic element

q :
∣∣(Y∗N)|α

∣∣ (Γ,Γ▷) id p is given by q ∆S ∆C u (u†, n) ≜ n.
Finally, we have to check the universal property of the extended context. Given (∆,∆†) :

P , a morphism from (Ω,Ω†) to (Γ,Γ▷) consists of a morphism ρ : S(Ω → Γ) and a dependent
natural transformation

ρ▷ : ∀∆S ∆C (u : S(∆S → Ω)) → Ω† u → Γ▷ (u · ρ).

By definition of Γ▷, this is equivalently given by a pair of dependent natural transformations

ρ† : ∀∆S ∆C (u : S(∆S → Ω)) → Ω† u → Γ† (u · ρ)
ρn : ∀∆S ∆C (u : S(∆S → Ω)) (u† : Ω† u) → |N | ∆S ∆C (α ∆S ∆C (u · ρ) (ρ† u u†)),

i.e. by ρ† : P(Ω† →ρ Γ†) and ρn :
∣∣(Y∗N)|α

∣∣ (Ω,Ω†) ρ ρ†. This shows that (Γ,Γ▷) satisfies
the universal property of a representing object of (Y∗N)|α. ◀
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▶ Proposition 30 (Internally to PshP). For every ω-small presheaf A : {Y∗} → PshC
ω, the

unique map

({Y∗} → A {Y∗}) → ({G∗} → 1)

preserves context extensions. Equivalently, the constant map

({G∗} → B {G∗}) → (({Y∗} → A {Y∗}) → ({G∗} → B {G∗}))

is an isomorphism for every B : {G∗} → PshS .

Proof. This follows from the fact that the projection map p : P((Γ,Γ▷) → (Γ,Γ†)) construc-
ted in the proof of Proposition 29 is sent by G to the identity morphism id : S(Γ → Γ). ◀

We can now forget the definitions of P , G and Y , as we will only rely on these properties.
We will work internally to PshP , PshC and PshS and use the dependent right adjoints

F ∗, G∗, Y ∗, Y∗ and their compositions. There is actually, up to isomorphism, only a single
new composite dependent right adjoint Y∗Y

∗.

▶ Construction 31. We construct a displayed model with context extensions S† over G :
P _ S. Furthermore, we equip Y : C → P with actions on displayed types and terms that
preserve all displayed type-theoretic operations.

Construction. We pose, internally to PshP ,

Ty† : (A : {G∗} → TyS) → PshP

Ty† A ≜ {Y∗} → Ty• (λ{F ∗} 7→ (A {G∗})[Y∗F
∗/G∗])

Tm† : ∀A (A† : Ty† A)(a : {G∗} → TmS (A {G∗})) → PshP

Tm† A† a ≜ {Y∗} → Tm• (A† {Y∗}) (λ{F ∗} 7→ (a {G∗})[Y∗F
∗/G∗])

By Proposition 28, the family ({G∗} → TmS (A {G∗})) is locally representable. By Proposi-
tion 29, the family Tm† A† a is also locally representable. Thus the dependent sum

(a : {G∗} → TmS (A {G∗})) × (a† : Tm† A† a)

is a locally representable family of presheaves. The fact that the first projection map

(a : {G∗} → TmS (A {G∗})) × (a† : Tm† A† a) λ(a,a†)7→a−−−−−−−→ ({G∗} → TmS (A {G∗}))

preserves context extensions follows from Proposition 30.
We have, internally to PshC , the following isomorphisms

Y Ty : (A : {F ∗} → TyS)

→ Ty• A ≃ ({Y ∗} → Ty† (λ{G∗} 7→ (A {F ∗})[Y ∗G∗/F ∗]))
Y Ty ≜ λA A• {Y ∗Y∗} 7→ A•[Y ∗Y∗/•]
Y Ty,−1 ≜ λA A† 7→ (A† {Y ∗Y∗})[•/Y ∗Y∗]

Y Tm : ∀(A : {F ∗} → TyS) (A• : Ty• A) (a : {F ∗} → TmS (A {F ∗}))

→ Tm• A• a ≃ ({Y ∗} → Tm† (Y Ty A• {Y ∗}) (λ{G∗} 7→ (a {F ∗})[Y ∗G∗/F ∗]))
Y Tm ≜ λA• a a• {Y ∗Y∗} 7→ a•[Y ∗Y∗/•]
Y Tm,−1 ≜ λA• a a† 7→ (a† {Y ∗Y∗})[•/Y ∗Y∗]
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More generally, for every (global) telescope X of S, we have the following isomorphisms

Y [X]Ty : (A : {F ∗} → X → TyS)
→ (∀x (x• : X• x) → Ty• (A⊛ x))

≃ (∀{Y ∗} x (x† : X† x) → Ty† (λ{G∗} 7→ (A {F ∗})[Y ∗G∗/F ∗]) (x {G∗}))

Y [X]Ty ≜ λA A• {Y ∗} x x† {Y∗} 7→ A•[Y ∗Y∗/•] (Y X,−1 (λ{Y ∗} 7→ x†[Y∗Y
∗/•]))

Y [X]Ty,−1 ≜ λA A† x• 7→ (A† {Y ∗} (Y X x• {Y ∗}) {Y∗})[•/Y ∗Y∗]

Y [X]Tm : ∀(A : {F ∗} → X → TyS) (A• : ∀x (x• : X• x) → Ty• (A⊛ x))

(a : {F ∗} → (x : X) → TmS (A {F ∗} x))
→ (∀x (x• : X• x) → Tm• (A• x•) (a⊛ x))
≃ (∀{Y ∗} x (x† : X† x) →

Tm† (Y [X]Ty A• {Y ∗} x†) (λ{G∗} 7→ (a {F ∗})[Y ∗G∗/F ∗]) (x {G∗}))

Y [X]Tm ≜ λa a• {Y ∗} x x† {Y∗} 7→ a•[Y ∗Y∗/•] (Y X,−1 (λ{Y ∗} 7→ x†[Y∗Y
∗/•]))

Y [X]Tm,−1 ≜ λa a† x• 7→ (a† {Y ∗} (Y X x• {Y ∗}) {Y∗})[•/Y ∗Y∗]

where X•, X† and Y X can be defined by induction on X. In particular we obtain bijective
actions of Y on every derived sort of the theory.

It remains to define the type-theoretic operations of S†. Each operation of S† should be
derived from the corresponding operation of S•. We want all of the displayed operations to
be preserved by Y Ty and Y Tm.

In the case of the Π type former, this translates to the following equation, internally to
PshC .

Y Ty (Π• A• B•) {Y ∗} = Π† (Y Tm A• {Y ∗}) (Y [Tm]Ty B• {Y ∗})

To define Π†, we essentially have solve this equation We look for a candidate with the
following shape (where A‡, B‡, etc., are still to be determined).

Π† = λA† B† {Y∗} 7→ Π• A‡(A†, {Y∗}) B‡(B†, {Y∗})

The following equation should then hold internally to PshP .

λ{Y∗} 7→ Π• A• B• = λ{Y∗} 7→ Π• A‡(Y Ty A• {Y ∗}, {Y∗}) B‡(Y [Tm]Ty B• {Y ∗}, {Y∗})

We use the following definitions for A‡ and B‡.

A‡(A†, {Y∗}) ≜ A† {Y∗}
B‡(B†, {Y∗}) ≜ λa• 7→ (B†[Y∗Y

∗/•] (Y Tm a• {Y ∗}) {Y∗})[•/Y ∗Y∗]

Thus we obtain

Π† = λA† B† {Y∗} 7→ Π• (A† {Y∗}) (λa• 7→ (B†[Y∗Y
∗/•] (Y Tm a• {Y ∗}) {Y∗})[•/Y ∗Y∗])

In general, we have to solve equations of the form

y‡(Y [X]Ty y• {Y ∗}, {Y∗}) = y•.

or

y‡(Y [X]Tm y• {Y ∗}, {Y∗}) = y•.
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They admit solutions with the following shape:

y‡(y†, {Y∗}) ≜ λx• 7→ (y†[Y∗Y
∗/•] (Y X x• {Y ∗}) {Y∗})[•/Y ∗Y∗].

This provides a definition of all displayed type-theoretic operations of S†.

Π† A† B† = λ{Y∗} 7→ Π• (A† {Y∗}) (λa• 7→ (B†[Y∗Y
∗/•] (Y Tm a• {Y ∗}) {Y∗})[•/Y ∗Y∗])

app† f† a† = λ{Y∗} 7→ app• (f† {Y∗}) (a† {Y∗})

lam† b† = λ{Y∗} 7→ lam• (λa• 7→ (b†[Y∗Y
∗/•] (Y Tm a• {Y ∗}) {Y∗})[•/Y ∗Y∗])

. . .

These operations satisfy the equations that hold in S•. ◀

C.5 Displayed inserters
We fix two parallel displayed functors K,L : C → D over a base category S.

C D

S
F

K

L

G

▶ Definition 32. The displayed inserter of K and L is a displayed category I : I _ C
over C.

A object of I displayed over an object x of C is a displayed morphism

ιx : D(K x →idF x
L x).

A morphism of I from ιx to ιy displayed over f : C(x → y) is a proof of the commutation
of the square

K x L x

K y L y

ιx

K f L f

ιy

There is a natural transformation ι : (I ·K) ⇒ (I · L) formed by the morphisms ιx.
The category I satisfies the following universal property: for every category A along with

a functor A : A → C and a natural transformation γ : (A ·K) ⇒ (A ·L), there exists a unique
functor B : A → I such that A = (B · I) and γ = (B · ι). ⌟

▶ Proposition 33 (Internally to PshI). Assume given locally representable presheaves

AS : {I∗F ∗} → RepPshS

AC : {I∗} → RepPshC

AD : {I∗L∗} → RepPshD

along with actions of K, L and G on these presheaves

KA : {I∗} → AC {I∗} → {K∗} → (AD {I∗F ∗})[ι : I∗K∗/I∗L∗]
LA : {I∗} → AC {I∗} → {L∗} → AD {I∗L∗}
GA : {I∗L∗} → AD {I∗L∗} → {G∗} → (AS {I∗F ∗})[L∗G∗/F ∗]
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such that LA and GA preserve context extensions and the two composed actions of F on A

coindide, i.e. the equality

(GA {I∗L∗} (LA {I∗} a {L∗}) {G∗})[F ∗/L∗G∗]
= ((GA {I∗L∗})[ι : I∗K∗/I∗L∗] (KA {I∗} a {K∗}) {G∗})[F ∗/K∗G∗]

holds over the context ({I∗}, a : AC {I∗}, {F ∗}).
Then the presheaf

AI ≜ {I∗} → {a : AC {I∗} | {K∗} → (KA {I∗} a {K∗}) = (LA {I∗} a {L∗})[ι : I∗K∗/I∗L∗]}

is locally representable and the first projection map

IA : AI → {I∗} → AC {I∗}

preserves context extensions.

Proof. We translate the statement externally. Fix an object (x, ιx) of I. We have locally
representable dependent presheaves

AS : ∀(y : Sop)(ρ : S(y → F x)) → Set
AC : ∀(y : Cop)(ρ : C(y → x)) → Set
AD : ∀(y : Dop)(ρ : D(y → L x)) → Set

and dependent natural transformations

KA : ∀(y : Cop)(ρ : C(y → x)) → AC ρ → AD (K ρ · ιx)
LA : ∀(y : Cop)(ρ : C(y → x)) → AC ρ → AD (L ρ)
GA : ∀(y : Dop)(ρ : C(y → L x)) → AD ρ → AS (G ρ)

such that LA and GA preserves context extensions and such that for every ρ : C(y → x) and
a : AC ρ, we have GA (L ρ) (LA ρ a) = GA (K ρ · ιx) (KA ρ a).

We have to show that the dependent presheaf

AI : ∀((y, ιy) : Iop)(ρ : I((y, ιy) → (x, ιx))) → Set
AI (y, ιy) ρ ≜ {a : AC ρ | KA ρ a = (LA ρ a)[ιy]}

is locally representable.
Fix some object (y, ιy) of I along with ρ : I((y, ιy) → (x, ιx)). Recall that ρ is a morphism

ρ : C(y → x) such that ιy ·K ρ = L ρ · ιx.
We have to show that the presheaf

AI
|(y,ιy) : ∀(z : Iop)(σ : I(z → (y, ιy))) → Set

AI
|(y,ιy) σ ≜ AI (σ · ρ)

is representable.
We know that AC

|y and AD
|L y are representable and that LA preserves context extensions.

Thus we have some representing object p : C(y▷ → y) of AC
|y, and we know that L p :

D(L y▷ → L y) is a representing object of AD
|L y. We have a generic element q : AC (p · ρ)

for AC
|y, and LA (p · ρ) q : AD (L (p · ρ)) is a generic element for AD

|L y.
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We construct a morphism ιy
▷ : D(K y▷ → L y▷) such that the square

K y▷ L y▷

K y L y

K p

ιy▷

L p

ιy

commutes and such that G ιy
▷ = idF y.

By the universal property of L y▷, we define ιy▷ as the extension of K p · ιy by the
element KA (p · ρ) q : AD (K p · ιy · L ρ).

ιy
▷

≜
〈
K p · ιy,KA (p · ρ) q

〉
.

We can then compute

G ιy
▷

= G
〈
K p · ιy,KA (p · ρ) q

〉
=

〈
G (K p) ·G ιy, GA (K (p · ρ) · ιx) (KA (p · ρ) q)

〉
=

〈
G (L p), GA (L (p · ρ)) (LA (p · ρ) q)

〉
= G

〈
L p, LA (p · ρ) q

〉
= G (L ⟨p, q⟩)
= id

This defines an object (y▷, ιy▷) of I, equipped with a projection p into (y, ιy). It remains
to show that this object represents AI

|(y,ιy).
Fix an object (z, ιz) of I along with a morphism σ : I((z, ιz) → (y, ιz)). We know that

factorizations of σ : C(z → y) through p : C(y▷ → y) are in natural bijection with elements of
AC (σ ·ρ). We extend this bijection to I. Because a displayed morphism of I over a morphism
of C only consists of propositional data, we only need to construct a logical equivalence at
the level of AI .

Take an element a : AI (σ · ρ). By the universal property of y▷, we have an extended
morphism ⟨σ, a⟩ : C(z → y▷). Let’s show that the square

K z L z

K y▷ L y▷

ιz

K ⟨σ,a⟩ L ⟨σ,a⟩

ιy▷

commutes.
By the universal property of Ly▷ , both K ⟨σ, a⟩ · ιy▷ and ιz · L ⟨σ, a⟩ can be written as

the extension of some morphism in D(K z → L y) by some element of AD. We compute

K ⟨σ, a⟩ · ay▷

= K ⟨σ, a⟩ ·
〈
K p · ιy,KA (p · ρ) q

〉
=

〈
K (⟨σ, a⟩ · p) · ιy, (KA (p · ρ) q)[K ⟨σ, a⟩]

〉
=

〈
K σ · ιy, (KA (p · ρ) q)[K ⟨σ, a⟩]

〉
=

〈
K σ · ιy,KA (σ · ρ) a

〉
and

ιz · L ⟨σ, a⟩ = ιz ·
〈
L σ,LA (σ · ρ) a

〉
=

〈
ιz · L σ, (LA (σ · ρ) a)[ιz]

〉
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Now K σ · ιy = ιz · L σ because σ is a morphism of I, and KA (σ · ρ) a = (LA (σ · ρ) a)[ιz]
because a is an element of AI . Thus we have K ⟨σ, a⟩ · ιy▷ = ιz · L ⟨σ, a⟩, as needed.

This concludes the proof that AI
|(y,ιy) is representable. The dependent presheaf AI is

thus locally representable.
Finally, we also have to check that the representing objects that we have constructed are

natural in (x, ιx). This follows from the fact that the representing objects of AC are natural
in x. ◀

We now return to the setting of our induction principles. We fix a base model S of
TΠ,B, a functor F : C → S equipped with a displayed model without context extensions S•,
a factorization (C Y−→ P G−→ S,S†) and a section S of S†. We let I(S•) be the displayed
inserter of Y and F · S.

The following diagram describes the categories and functors in play.

I(S•)

C P

S

I

Y

F G

S0

▶ Proposition 34. If C has a terminal object that is preserved by F : C → S, then I(S•) has
a terminal object that is preserved by I : I(S•) → C.

Proof. The terminal object of I(S•) is (⋄, ι⋄), where ⋄ is the terminal object of C and
ι⋄ : P(Y ⋄ →id S (F ⋄)). Since both S and F both preserve terminal objects, there is a
unique such ι⋄. This also implies that (⋄, ι⋄) is terminal. ◀

We can also specialize Proposition 33 to this situation.

▶ Proposition 35 (Internally to PshI(S•)). Assume given the following data:

A locally representable presheaf AS : {I∗F ∗} → RepPshS .
A dependent presheaf A• : {I∗} → ({F ∗} → AS {I∗F ∗}) → PshC .
A dependent presheaf A† : {I∗F ∗S∗

0} → ({G∗} → (AS {I∗F ∗})[S∗
0G

∗/•]) → PshS such
that the first projection map

(a : {G∗} → (AS {I∗F ∗})[S∗
0G

∗/•]) × (a† : A† {I∗F ∗S∗
0} a)

λ(a,a†)7→a−−−−−−−→ ({G∗} → (AS {F ∗})[S∗
0G

∗/•])

has a locally representable domain and preserves context extensions.
A bijective action

Y A : {I∗} {a : {F ∗} → AS {I∗F ∗}} →
A• {I∗} a ≃ ({Y ∗} → (A† {I∗F ∗S∗

0})[ι : I∗Y ∗/I∗F ∗S∗
0 ] (λ{G∗} 7→ (a {G∗})[F ∗/Y ∗G∗])).

An action

SA : {I∗F ∗} (a : AS {I∗F ∗}) {S∗
0} → A† {I∗F ∗S∗

0} (λ{G∗} 7→ a[S∗
0G

∗/•])

whose induced total action preserves context extensions.
A locally representable presheaf AC : {I∗} → RepPshC .
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An action FA : {I∗} → AC {I∗} → {F ∗} → AS {I∗F ∗} that preserves context extensions.
A map f : {I∗} → (a : AC {I∗}) → A• {I∗F ∗} (FA {I∗} a).

We pose

SA : {I∗} (a : {F ∗} → AS {I∗F ∗}) → A• {I∗} a
SA {I∗} a ≜ Y A,−1 (λ{Y ∗} 7→ (SA (a {F ∗}) {S∗

0})[ι : I∗Y ∗/I∗F ∗S∗
0 ])

Then the presheaf

AI(S•) ≜ {I∗} → {a : AC {I∗}
| SA {I∗} (λ{F ∗} 7→ FA {I∗} a {F ∗}) = f {I∗} a}

is locally representable and the first projection map

AI(S•) → {I∗} → AC {I∗}

preserves context extensions.

Proof. This follows from Proposition 33, applied to the following presheaves

BS {I∗F ∗} ≜ AS {I∗F ∗}
BC {I∗} ≜ (a : {F ∗} → AS {I∗F ∗}) × (A• {I∗} a)
BP {I∗F ∗S∗

0} ≜ (a : {G∗} → (AS {I∗F ∗})[S∗
0G

∗/•]) × (A† {I∗F ∗S∗
0} a)

and to the following actions

Y A {I∗} a {Y ∗}
≜ (λ{G∗} 7→ (FA {I∗} a {F ∗})[F ∗/Y ∗G∗], Y A {I∗} (f {I∗} a) {Y ∗})

(F · S)A {I∗} a {F ∗S∗
0}

≜ (λ{G∗} 7→ (FA {I∗} a {F ∗})[S∗
0G

∗/•], SA {I∗F ∗} (FA {I∗} a {F ∗}) {S∗
0})

GA {I∗F ∗S∗
0} (a,−) {G∗} ≜ a {G∗} ◀

C.6 Relative sections
From the point of view of I, the relative section of S• already exists. That is, we have, for
every telescope X, operations

S[X]Ty
ι : ∀{I∗}(A : {F ∗} → X → Ty) x (x• : X• x) → Ty• (A⊛ x)

S[X]Ty
ι ≜ λ{I∗} A x• 7→ Y [X]Ty,−1 (λ{Y ∗} 7→ (S[X]Ty (A {F ∗}) {S∗

0})[ι : I∗Y ∗/I∗F ∗S∗
0 ]) x•

S[X]Tm
ι : ∀{I∗} A (a : ∀{F ∗} x → Tm (A {F ∗} x)) x (x• : X• x)

→ Tm• (S[X]Ty{I∗} A x x•) (a⊛ x)

S[X]Tm
ι ≜ λ{I∗} a x• 7→ Y [X]Tm,−1 (λ{Y ∗} 7→ (S[X]Tm (a {F ∗}) {S∗

0})[ι : I∗Y ∗/I∗F ∗S∗
0 ]) x•,

where X• : ({F ∗} → X {F ∗}) → PshC is defined by induction on the telescope X.
Given any section ⟨α⟩ of I : I → C, we can then define

S[X]Ty
α : ∀(A : {F ∗} → X → Ty) x (x• : X• x) → Ty• (A⊛ x)

S[X]Ty
α ≜ λA x• 7→ (S[X]Ty

ι {I∗})[•/⟨α⟩∗
I∗] A x•

S[X]Tm
α : ∀A (a : ∀{F ∗} x → Tm (A {F ∗} x)) x (x• : X• x)

→ Tm• (S[X]Ty A x x•) (a⊛ x)

S[X]Tm
α ≜ λa x• 7→ (S[X]Tm

ι {I∗})[•/⟨α⟩∗
I∗] a x•
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Note that we have

S[X]Ty
α = λA x• 7→ Y [X]Ty,−1 (λ{Y ∗} 7→ (S[X]Ty (A {F ∗}) {S∗

0})[α : Y ∗/F ∗S∗
0 ]) x•

S[X]Tm
α = λa x• 7→ Y [X]Tm,−1 (λ{Y ∗} 7→ (S[X]Tm (a {F ∗}) {S∗

0})[α : Y ∗/F ∗S∗
0 ]) x•

These actions preserve all type-theoretic operations. This follows from the fact that the
actions of S0 and Y on types and terms preserve the type-theoretic operations. We give the
detailed proof for B and Π.

S[X]Ty
α (λ{F ∗} x 7→ B) = Y [X]Ty,−1 (λ{Y ∗} x† 7→ (S[X]Ty B {S∗

0} (x† {S∗
0}))[α : Y ∗/F ∗S∗

0 ])
(definition of S[X]Ty

α )

= Y [X]Ty,−1 (λ{Y ∗} x† 7→ B†[α : Y ∗/F ∗S∗
0 ])

(S[X]Ty
α preserves B)

= Y [X]Ty,−1 (λ{Y ∗} x† 7→ B†)
(commutation with −[α : Y ∗/F ∗S∗

0 ])
= B• (Y [X]Ty preserves B)

S[X]Ty
α (λ{F ∗} x 7→ Π (A {F ∗} x) (B {F ∗} x))

= Y [X]Ty,−1 (λ{Y ∗} x† 7→ (S[X]Ty
α (λx 7→ Π (A {F ∗} x) (B {F ∗} x)) {S∗

0} (x† {S∗
0}))[α : Y ∗/F ∗S∗

0 ])
(definition of S[X]Ty

α )

= Y [X]Ty,−1 (λ{Y ∗} x† 7→ (Π† (S[X]Ty
α A {S∗

0} (x† {S∗
0})) (S[X,Tm]Ty

α B {S∗
0} (x† {S∗

0})))[α : Y ∗/F ∗S∗
0 ])

(S[X]Ty
α preserves Π)

= Y [X]Ty,−1 (λ{Y ∗} x† 7→ Π† (S[X]Ty
α A {S∗

0} (x† {S∗
0}))[α : Y ∗/F ∗S∗

0 ]

(S[X,Tm]Ty
α B {S∗

0} (x† {S∗
0}))[α : Y ∗/F ∗S∗

0 ])
(commutation with −[α : Y ∗/F ∗S∗

0 ])

= Π• (Y [X]Ty,−1 (λ{Y ∗} x† 7→ (S[X]Ty
α A {S∗

0} (x† {S∗
0}))[α : Y ∗/F ∗S∗

0 ]))

(Y [X,Tm]Ty,−1 (λ{Y ∗} x† 7→ (S[X,Tm]Ty
α B {S∗

0} (x† {S∗
0}))[α : Y ∗/F ∗S∗

0 ]))
(Y [X]Ty preserves Π)

= Π• (S[X]Ty
α A) (S[X,Tm]Ty

α B) (definitions of S[X]Ty
α and S

[X,Tm]Ty
α )

C.7 Induction principles
▶ Lemma 10 (Induction principle relative to {⋄} → 0TΠ,B). Denote by {⋄} the terminal
category (which should rather be seen here as the initial category equipped with a terminal
object), and consider the functor F : {⋄} → 0TΠ,B that selects the empty context of 0TΠ,B .

Any global displayed model without context extensions over F admits a relative section. ◀

Proof. By biinitiality of 0TΠ,B , we have a section S0 of the displayed model 0†
TΠ,B

.
By Proposition 34 I(0•

TΠ,B
) has a terminal object. This determines a section ⟨α⟩ of

I : I(0•
TΠ,B

) → {⋄}. We thus have a relative section Sα of 0•
TΠ,B

. ◀

▶ Lemma 12 (Induction principle relative to Ren → 0TΠ,B). Let 0•
TΠ,B

be a global displayed
model without context extensions over F : Ren → 0TΠ,B , along with, internally to I(S•), a
global map

var• : ∀{I∗}(A : {F ∗} → Ty)(a : Var A) → Tm• (STy
ι {I∗} A) (var a).
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Then there exists a relative section Sα of 0•
TΠ,B

. ◀

Proof. By biinitiality of 0TΠ,B , we have a section S0 of the displayed model 0†
TΠ,B

.
We now equip I(0•

TΠ,B
) with the structure of a renaming algebra. By Proposition 34

I(0•
TΠ,B

) has a terminal object. We pose

VarI A ≜ {I∗} → {a : VarRen (A {I∗}) | STm
ι (var a) = var• {I∗} a}.

By Proposition 33, VarI is a family of locally representable presheaves. Thus I(0•
TΠ,B

)
has the structure of a renaming algebra. By biinitiality of Ren, we obtain a section ⟨α⟩ of
I : I(0•

TΠ,B
) → Ren, and thus a relative section Sα of 0•

TΠ,B
.

The morphism ⟨α⟩ of renaming algebras has an action on variables.

⟨α⟩Var : ∀(a : VarRen A) {⟨α⟩∗
I∗} → STm

ι (var a[•/⟨α⟩∗
I∗]) = var• {I∗} a[•/⟨α⟩∗

I∗]

Thus given any variable a : VarRen A, we know that STm
α (var a) = (var• {I∗})[•/⟨α⟩∗

I∗] a. ◀

▶ Lemma 15 (Induction principle relative to □ → 0CTT). Let 0•
CTT be a global displayed model

without context extensions over F : □ → 0CTT, along with a map

int• : (i : I□) → I• (int i)

such that int• 0□ = 0• and int• 1□ = 1•.
Then there exists a relative section Sα of 0•

CTT. ◀

Proof. By biinitiality of 0CTT, we have a section S0 of the displayed model 0†
CTT.

We now equip I(0•
CTT) with the structure of a renaming algebra. By Proposition 34

I(0•
CTT) has a terminal object. We pose

II ≜ {I∗} → {i : I□ | SI
ι (int i) = int• {I∗} i}.

Since we have SI
ι 0□ = 0• and SI

ι 1□ = 1•, we can lift 0□ and 1□ to elements 0I , 1I : II .
By Proposition 33, II is a locally representable presheaf. Thus I(0•

CTT) has the structure
of a cubical algebra. Furthermore I : I(0•

CTT) → □ is a morphism of cubical algebras. By
biinitiality of □, we obtain a section ⟨α⟩ of I : I(0•

CTT) → □, and thus a relative section Sα

of 0•
CTT.
The morphism ⟨α⟩ of cubical algebras has an action on the interval.

⟨α⟩I : ∀(i : I□) {⟨α⟩∗
I∗} → SI

ι (int i[•/⟨α⟩∗
I∗]) = int• {I∗} i[•/⟨α⟩∗

I∗]

Thus given any interval element i : I□, we know that SI
α (int i) = (int• {I∗})[•/⟨α⟩∗

I∗] i. ◀

▶ Lemma 17 (Induction principle relative to A□ → 0CTT). Let 0•
CTT be a global displayed

model without context extensions over F : A□ → 0CTT, along with, internally to PshI(0•
CTT),

global maps

var• : ∀{I∗} (A : {F ∗} → Ty)(a : Var A) → Tm• (STy
ι {I∗} A) (var a),

int• : ∀{I∗} (i : IA□) → I• (int i),

such that int• {I∗} 0A□ = 0• and int• {I∗} 1A□ = 1•.
Then there exists a relative section Sα of 0•

CTT. ◀

Proof. Similar to the proofs of Lemma 12 and Lemma 15. ◀
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D Normalization

In this section, we describe a normalization proof for a type theory TU with a hierarchy of
universes indexed by natural numbers, closed under Π-types and boolean types. This proof
relies on an induction principle relative to Ren → 0TU .

The proof follows the same structure as Coquand normalization proof from [12]; it is
an algebraic presentation of Normalization by Evaluation (NbE). There is one important
difference between the type theory TU and the type theory considered in [12]. Our type
theory is not cumulative; type-formers at different universe level are distinct. We believe
that proving normalization for a cumulative type theory should be possible in our framework,
but getting the details right is tricky and the definitions become very verbose. These details,
such as the precise definition of the normal forms, were omitted from Coquand’s proof. We
prove slightly more; in addition to the existence of normal forms, we also prove uniqueness.
Proving uniqueness relies on the computation rules of relative sections.

D.1 The type theory TU

We describe the structure of a model of TU over a category C, internally to PshC .
Types and terms are now indexed by universe levels.

Ty : ∀(i : N) → PshC

Tm : ∀(i : N) (A : Tyi) → RepPshC

We have lifting functions that can be used to move between different universe levels.

Lift : ∀(i : N) → Tyi → Tyi+1

lift : ∀(i : N) (A : Tyi) → Tmi A ≃ Tmi+1 (Lifti A)

We have a hierarchy of universes, indexed by universe levels. The terms of the i-th
universe are in bijection with the types of level i.

U : ∀(i : N) → Tyi+1

El : ∀(i : N) → Tmi+1 Ui ≃ Tyi

Finally, we have Π-types and boolean numbers types at every universe level. The motive
of the eliminator for booleans can be at any universe level.

Π : ∀i (A : Tyi) (B : Tm A → Tyi) → Tyi

app : ∀i A B → Tmi (Π A B) ≃ ((a : Tm A) → Tm (B a))
− : elimB P t f true = t

− : elimB P t f false = f

B : ∀i → Tyi

true, false : ∀i → Tmi B
elimB : ∀i j (P : Tm B → Tyj) (t : Tm (P true)) (f : Tm (P false)) (b : Tm Bi) → Tm (P b)

We have, as for TΠ,B, notions of displayed models without context extensions and of
relative sections for TU . The following variant of Lemma 12 can easily be proven for TU .
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▶ Definition 36. A renaming algebra over a model S of TU is a category R with a terminal
object, along with a functor F : R → S preserving the terminal object, a locally representable
dependent presheaf of variables

VarR : ∀i (A : {F ∗} → TyS
i ) → RepPshR

and an action on variables var : ∀i A (a : Vari A) {F ∗} → TmS
i (A {F ∗}) that preserves

context extensions.
The category of renamings RenS over a model S is defined as the biinitial renaming

algebra over S. We denote the category of renamings of the biinitial model 0TU by Ren. ⌟

▶ Lemma 37 (Induction principle relative to Ren → 0TU ). Let 0•
TU

be a global displayed model
without context extensions over F : Ren → 0TU , along with, internally to I(S•), a global
map

var• : ∀{I∗} i (A : {F ∗} → Tyi)(a : Vari A) → Tm• (STy
ι {I∗} A) (var a).

Then there exists a relative section Sα of 0•
TU

. It satisfies the additional computation rule

STm
α (var a) = (var• {I∗})[•/⟨α⟩∗

I∗] a.

◀

D.2 Normal forms

The goal of normalization is to prove that every term admits a unique normal form. We first
need to define normal types, normal forms and neutral terms (which correspond to stuck
computations). They are defined, internally to PshRen , as inductive families indexed by the
terms of 0TU .

Ne : ∀i (A : {F ∗} → Tyi) → ({F ∗} → Tmi (A {F ∗})) → PshRen

Nf : ∀i (A : {F ∗} → Tyi) → ({F ∗} → Tmi (A {F ∗})) → PshRen

NfTy : ∀i → ({F ∗} → Tyi) → PshRen

An element of Ne a (resp. Nf a) is a witness of the fact that the term a is a neutral term
(resp. admits a normal form). An element of NfTy A is a witness that the type A admits a
normal form.

We list below the constructors of these inductive families.

varne : ∀i A (a : Vari A) → Nei A (var a)
lift−1,ne : ∀i A → Nei+1 (Lifti A) a → Nei (lift−1 a)
appne : ∀i A B f a → Nei f → Nfi a

→ Nei (app $ A⊛B ⊛ f ⊛ a)
elimne

B : ∀i j P t f b → ((m : Var (λ{F ∗} 7→ Bi)) → NfTyj (P ⊛ var m))
→ Nf t → Nf f → Nei b → Nei (elimB $ P ⊛ f ⊛ t⊛ b)
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nftynf : ∀i → NfTyi A → Nfi+1 (λ{F ∗} 7→ Ui) A
nenf

B : ∀i a → Nei (λ{F ∗} 7→ Bi) a → Nfi a

nenf
El : ∀i A → Nei+1 (λ{F ∗} 7→ Ui) A

→ Nei (El $ A) a → Nfi a

liftnf : ∀i A → Nfi A a → Nfi+1 (Lift A) (lift a)
truenf : ∀i → Nfi true
falsenf : ∀i → Nfi false
lamnf : ∀i A B b → NfTyi A → ((a : Var A) → NfTyi (B ⊛ var a))

→ ((a : Var A) → Nfi (b⊛ var a))
→ Nfi (lam $ A⊛B ⊛ b)

nenfty
U : ∀i A → Nei+1 (λ{F ∗} → Ui) A → NfTyi+1 (El $ A)

Unfty : ∀i → NfTyi+1 (λ{F ∗} → Ui)

Liftnfty : ∀i → NfTyi A → NfTyi+1 (Lift A)
Bnfty : ∀i → NfTyi (λ{F ∗} → Bi)
Πnfty : ∀i A B → NfTyi A → ((a : Var A) → NfTyi (B ⊛ var a))

→ NfTyi (Π $ A⊛B)

The construction of our normalization function will work for any algebra (Ne, Nf, NfTy,
Ne, Nf, NfTy, . . . ) with the above signature. The choice of the initial algebra is only needed
to show uniqueness of normal forms in Lemma 38.

D.3 The normalization displayed model

We now construct a displayed model without context extensions 0•
TU

over F : Ren → 0TU ,
internally to PshRen .

A displayed type A• : Ty• A of 0•
TU

over a type A : {F ∗} → Tyi consists of four components
(A•

nfty, A
•
p, A

•
ne, A

•
nf).

A•
nfty : NfTyi A is a witness of the fact that the type A admits a normal form.

A•
p : ({F ∗} → Tm (A {F ∗})) → PshRen

i is a proof-relevant logical predicate over the
terms of type A, valued in i-small presheaves.
A•

ne : ∀a → Nei a → A•
p a shows that neutral terms satisfy the logical predicate A•

p. The
function A•

ne is often called unquote or reflect.
A•

nf : ∀a → A•
p a → Nfi a shows that the terms that satisfy the logical predicate A•

p admit
normal forms. The function A•

nf is often called quote or reify.

A displayed term a• : Tm• A• a of type A• over a term (a : {F ∗} → Tm (A {F ∗})) is an
inhabitant a• of A•

p a, i.e. a witness of the fact that a satisfies the logical predicate A•
p.

The displayed lifted types are defined as follows. Because the structures of TU are not
strictly preserved by these lifting operations, Lifti A can be seen as a record type with a
projection lift−1 and a constructor lift. This definition would directly extend to Σ-types or
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to other record types.

Lift• : ∀i A → Ty•
i A → Ty•

i+1 (Lifti $ A)

(Lift•
i A

•)nfty ≜ Liftnfty A•
nfty

(Lift•
i A

•)p ≜ λa 7→ A•
p (lift−1 $ a)

(Lift•
i A

•)ne ≜ λane 7→ A•
ne (lift−1,ne ane)

(Lift•
i A

•)nf ≜ λa• 7→ liftnf (A•
nf a

•)

The definition of the displayed universes of the normalization displayed model is below.

U•
i : Ty•

i+1 (λ {F ∗} 7→ Ui)

U•
i,nfty ≜ Unfty

i

U•
i,p ≜ λA 7→ Ty•

i (El $ A)

(U•
i,ne A Ane)nfty ≜ nenfty

U Ane

(U•
i,ne A Ane)p

≜ λa 7→ Ne a

(U•
i,ne A Ane)ne ≜ λane 7→ ane

(U•
i,ne A Ane)nf ≜ λane 7→ nenf

El ane

U•
i,nf A A• ≜ A•

nfty

The most interesting part is the component U•
i,ne that constructs a displayed type over any

neutral element of the universe; any element of a neutral type is itself neutral.
For Π-types, the logical predicates are defined in the same way as for canonicity.

(Π• A• B•)nfty ≜ Πnfty Anfty (λavar 7→ let a• = A•
ne (varne avar) in (B• a•)nfty)

(Π• A• B•)p A ≜ ∀a (a• : A•
p) → (B• a•)p

(Π• A• B•)ne fne ≜ λa• 7→ (B• a•)ne (appne fne (A•
nf a

•))

(Π• A• B•)nf f
• ≜ lamnf (λavar 7→ let a• = A•

ne (varne avar) in (B• a•)nf (f• a•))

For booleans, we define an inductive family B•
p : ({F ∗} → Tm B) → PshRen generated

by

true• : B•
p (λ {F ∗} 7→ true)

false• : B•
p (λ {F ∗} 7→ false)

neB•
p : ∀b → Ne b → B•

p b

This family witnesses the fact that a boolean term is an element of the free bipointed presheaf
generated by the neutral boolean terms. This extends to the following definition of the
displayed boolean type in the normalization model.

B•
nfty ≜ Bnfty

B•
ne nne ≜ neB•

p

B•
nf true• ≜ truenf

B•
nf false• ≜ falsenf

B•
nf (neB•

p bne) ≜ nenf
B bne

The displayed boolean eliminator elim•
B is defined using the induction principle of B•

p.
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D.4 Normalization

Given any displayed type A•, every variable of type A satisfies the logical predicate A•
p; we

can define

var• : ∀{I∗} i (A : {F ∗} → Tyi)(a : Var A) → Tm• (STy
ι {I∗} A) (var a)

var• ≜ λ{I∗} A a 7→ (STy
ι {I∗} A)ne (varne a)

We can now apply Lemma 37 to 0•
TU

. We obtain a relative section Sα of 0•
TU

.
This proves the existence of normal forms, as witnessed by the following normalization

function, internally to PshRen .

norm : ∀i (A : {F ∗} → Tyi) (a : {F ∗} → Tm (A {F ∗})) → Nfi a

norm A a ≜ (STy
α A)nf (STm

α a)

D.5 Stability of normalization

It remains to show the uniqueness of normal forms. It follows from stability of normalization:

▶ Lemma 38 (Internally to PshRen). For every ane : Nei A a, we have STm
α a = (STy

α A)ne ane,
and for every anf : Nfi A a, we have (STy

α A)nf (STm
α a) = anf . Furthermore for every

Anfty : NfTyi A, we have (STy
α A)nfty = Anfty.

Proof. This lemma is proven by induction on Ne, Nf, NfTy.
We only list some of the cases.

varne a : Ne (var A a)

STm
α (var A a)

= (STy
α A)ne (varne a) (computation rule of Sα)

appne fne anf : Ne (app $ A ⊛ B ⊛ f ⊛ a)

STm
α (app $ f ⊛ a)

= app• (STm
α f) (STm

α a) (computation rule of Sα)
= (STm

α f) (STm
α a) (definition of app•)

= ((STy
α (Π A B))ne fne) (STm

α a) (induction hypothesis for fne)

= (Π• (STy
α A) (S[Tm]Ty

α B))ne fne (STm
α a) (computation rule of Sα)

= ((S[Tm]Ty
α B) (STm

α a))ne (appne fne ((STy
α A)nf (STm

α a))) (definition of Π•)
= (STy

α (B ⊛ a))ne (appne fne anf) (induction hypothesis for anf)
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lamnf bnf : Nf (lam $ {A} ⊛ {B} ⊛ b)

(STy
α (Π A B))nf (STm

α (lam $ b))

= (Π• (STy
α A) (S[Tm]Ty

α B))nf (lam• (S[Tm]Tm
α b)) (computation rule of Sα)

= (Π• (STy
α A) (S[Tm]Ty

α B))nf (λ a• 7→ (S[Tm]Tm
α b) a•) (definition of lam•)

= lamnf (λ avar 7→ let a• = (STy
α A)ne (varne avar) in (S[Tm]Ty

α B a•)nf (S[Tm]Tm
α b a•))

(definition of Π•)

= lamnf (λ avar 7→ let a• = STm
α (var avar) in (S[Tm]Ty

α B a•)nf (S[Tm]Tm
α b a•))

(computation rule of Sα)

= lamnf (λ avar 7→ (STy
α (B ⊛ var avar))nf (STm

α (b ⊛ var avar)))
(computation rule of Sα)

= lamnf (λ avar 7→ bnf avar) (induction hypothesis for bnf)

= lamnf bnf

Πnfty Anfty Bnfty : NfTy (Π $ A ⊛ B)

(STy
α (Π $ A⊛B))nfty

= (Π• (STy
α A) (S[Tm]Ty

α B))nfty (computation rule of Sα)

= Πnfty (STy
α A)nfty (λavar 7→ let a• = (STy

α A)ne (varne avar) in (S[Tm]Ty
α B a•)nfty)
(definition of Π•)

= Πnfty (STy
α A)nfty (λavar 7→ let a• = sTm

α (var avar) in (S[Tm]Ty
α B a•)nfty)
(computation rule of Sα)

= Πnfty (STy
α A)nfty (λavar 7→ (STy

α (B ⊛ var avar))nfty) (computation rule of Sα)

= Πnfty (STy
α A)nfty (λavar 7→ Bnfty avar) (induction hypothesis for Bnfty)

= Πnfty Anfty Bnfty (induction hypothesis for Anfty)

◀


	1 Introduction
	2 Internal language of presheaf categories and models of type theory
	2.1 Locally representable presheaves
	2.2 Internal definition of models
	2.3 Sorts and derived sorts

	3 Dependent Right Adjoints and morphisms of models
	3.1 Dependent Right Adjoints
	3.2 Modalities are applicative functors
	3.3 Preservation of context extensions
	3.4 Morphisms of models

	4 Relative induction principles
	5 Applications
	5.1 Canonicity
	5.2 Normalization
	5.3 Canonicity for cubical type theory
	5.4 Normalization for cubical type theory
	5.5 Syntactic parametricity
	5.6 Conservativity

	6 Future work
	A The dependent right adjoints F^* and F_*
	B Multimodal Type Theory
	B.1 Multiple modalities
	B.1.1 Ticks
	B.1.2 Morphisms between modalities


	C Constructions and Proofs
	C.1 Preservation of context extensions
	C.2 Displayed categories
	C.3 Sections of displayed models with context extensions
	C.4 Displayed presheaf category
	C.5 Displayed inserters
	C.6 Relative sections
	C.7 Induction principles

	D Normalization
	D.1 The type theory T_U
	D.2 Normal forms
	D.3 The normalization displayed model
	D.4 Normalization
	D.5 Stability of normalization


